Calculations using the mole concept

Objectives:

To introduce the concept of the mole as the unit of measurement for amounts of compounds; atoms, molecules and ions.

Introduction:

A mole of any substance: is the amount of the substance which contains a number of particles (atoms; molecules; etc.).

It is the relative atomic mass (RAM) expressed in grams for atoms.

e.g. One mole of Carbon atom c_{12} is 12 grams (RAM of C atom = 12).

One mole of Sodium atom Na_{23} is 23 grams (RAM of Na atom = 23).

This explains The Molar Mass of a substance: is the mass of one mole of the substance (M_r) , it is the relative mass in grams.

No. of moles = total mass in grams /molar mass (M_r)

e.g. M_r of Na atom = 23 grams (RAM of Na atom = 23)

 M_r of NaOH molecule =23+16+1=40 g .(RAM of Na, O and H atoms=23, 16and 1)

So M_r of atom equal its RAM but M_r of molecule equal sum of RAM of its atoms

N.B: One mole of any substance contains the same number of particles which is equal to **Avogadro's constant** (6.02 x10 23). But the **Mass of the mole** (M_r) of any substance **differs** according to relative atomic mass of its atoms.

e.g. 1 mole of Carbon contains 6.02×10^{23} particles and also 1 mole of Sodium contains 6.02×10^{23} particles while the mass of one mole of carbon atom is 12 gm but that of sodium atom is 23 gm

Examples:

1-How many moles of CO₂ molecules are present in 11g of CO₂ molecule?

Solution: By formula : M_r of $CO_2 = 12+16+16 = 44$ gm

Number of moles = total mass in grams/mass of 1 mole (molar mass) = 11/44 = 0.25 mole.

2-What is the mass of 2 moles of Ethanol molecule (C_2H_5OH)? if RAM of C, H and O = 12, 1 and 16)

Solution: By formula: M_r of $C_2H_5OH = (12+12)+(1+1+1+1+1+1+1+1)+(16)=46$ gm (this is the mass of one mole of the molecule)

So the mass of 2 moles = $46 \times 2 = 92$ gm.

3-How many atoms are there in 5 moles of Carbon?

Solution: One mole of the carbon contain 6.02×10²³ atom (*Avogadro's constant*)

So 5 moles contain = $5 \times 6.02 \times 10^{23} = 30.1 \times 10^{23}$ atoms.

Moles for Gases:

<u>Definition</u>: One mole of molecules of any gas occupies :

24L at room temp. and pressure (R.T.P)

Or 22.4L at standard temp. and pressure (**S.T.P**) which equal(0°C or 273 K for temp. and 1 atmosphere for pressure).

No. of moles of Gas (at R.T.P) = $\frac{\text{volume}}{24\text{L}}$

No. of moles of Gas (at S.T.P) = $\frac{\text{volume}}{22.4\text{L}}$

e.g How many moles of a gas if this gas occupy 12L at R.T.P?

Solution: No. of moles of Gas (at R.T.P) = $\frac{\text{volume}}{24\text{L}} = \frac{12}{24} = 0.5 \text{ mole}.$

Molar Solution (M):

Is a solution of a substance where one liter (1000 cm³) (1000 mL) contains one mole of the substance dissolved in it.

Molarity of solution = No. of moles $x = \frac{1000 \text{ Cm}3}{\text{Volum used (Cm}3)}$

$$= \frac{Total Mass}{Molar mass (Mr)} \times \frac{1000 Cm3}{Volum used (Cm3)}$$

N.B: molarity may be used to express the concentration of the solution.

Exercises:

Complete:

1-A mole of Oxygen atom(0) containsatoms. (6.02×10²³)

2-A mole of Oxygen molecule (O_2) contains molecules. (6.02×10²³)

3-A mole of Oxygen **molecule** (O_2) contains **atoms**. (2X6.02×10²³)

4-A mole of Oxygen atom(O) weights g. Mass = No. of moles X Molar mass or RAM of O atom =(1X16)= 16

5-A mole of Oxygen molecule (O₂) weights ... g. Mass = No. of moles X Molar mass (Mr) of O₂ molecule=(1X(16 + 16))= 32

Convert:

1-5.31 moles of C to grams of C (R.A.M. of C atom = 12).

Mass = No. of moles X Molar mass or RAM of C atom =(5.31X12) = 63.72 gm

2- 5 moles of Cl_2 to grams of Cl_2 (R.A.M. of Cl atom = 35.453).

Mass = No. of moles X Molar mass of Cl_2 molecule =(5X(2 X 35.453)) = 354.53 gm

3- 100g. of Fe to moles of Fe (R.A.M. of Fe atom = 55.84).

No. of moles = total mass in grams /molar mass or RAM of Fe atom (M₁)= 100/55.84 = 1.7908 mole

4- 30ml Hg (density(d.) of Hg=13.6g/ml) to moles of Hg (R.A.M. of Hg atom= 200.59).

d= mass/volum so mass= V X d = 30 X 13.6 = 408 gm

No. of moles = total mass in grams /molar mass or RAM of Hg atom (M_i) = 408/200.59 = 2.034 mole

H.W. 5- 40g. of N_2 to moles of N_2 (R.A.M. of N atom =14).

6-22.5 moles of Ag to grams of Ag (RAM of Ag atom= 107.86)