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In this article, we propose the shifted Legendre orthonormal polynomials for the numerical solution of 
the fractional optimal control problems that appear in several branches of physics and engineering. 
The Rayleigh-Ritz method for the necessary conditions of optimization and the operational matrix of 
fractional derivatives are used together with the help of the properties of the shifted Legendre 
orthonormal polynomials to reduce the fractional optimal control problem to solving a system of 
algebraic equations that greatly simplifies the problem. For confirming the efficiency and accuracy of 
the proposed technique, an illustrative numerical example is introduced with its approximate solution. 
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1. INTRODUCTION 

Due to the accuracy of fractional calculus in describing many mathematical, physical, and engineering 
phenomena in mechanical systems [1], chaos, solitons and fractals [2], finance [3], fluid-dynamics [4], solid 
mechanics [5], viscoelastic dampers [6] and others [7–10], it has become the focus of many researchers in 
recent years. 

Orthogonal polynomials have received considerable attention in dealing with various problems. The 
main characteristics behind the approach using this technique is that it reduces such problems into that of 
solving a system of algebraic equations that greatly simplifies the problem. Some types of orthogonal 
polynomials have been used as basis functions of many techniques for solving fractional differential 
equations [11–14]. Recently, some types of orthogonal polynomials have been introduced as basis functions 
of the operational matrices of fractional derivatives and integrals used to solve ordinary and partial fractional 
differential equations [15–23]. 

The optimal control problem is a set of differential equations describing the paths of the control 
variables that minimize a function of the state and control variables. Optimal control problems can be found 
in many scientific and engineering applications, and it has become a very active and successful research area 
in recent years. The fractional optimal control problem is an optimal control problem in which the 
differential equations governing the dynamics of the system contain a fractional order derivative term. 
Recently, many researchers have been interested in studying the fractional optimal control problems and 
finding numerical solutions for them, see, for instance [24–31]. 

Our main aim in this paper is to develop an accurate numerical algorithm for solving the fractional 
optimal control problem. For that purpose, the shifted Legendre orthonormal polynomials are used as basis 
functions of the operational matrix of fractional derivatives. These orthonormal polynomials are used 
together with the Rayleigh-Ritz method to reduce the fractional optimal control problem into a problem 
consisting of solving a system of algebraic equations. That system can be solved by any iterative method. 
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This article is structured as follows. In Section 2, some properties of the shifted Legendre orthonormal 
polynomials are introduced, while in Section 3, we derive the operational matrix of fractional derivatives. In 
Section 4, the Rayleigh-Ritz method and the operational matrix of fractional derivatives have been used 
together with the help of the properties of the shifted Legendre orthonormal polynomials to solve the 
fractional optimal control problem. In Section 5, a numerical example and comparison between the results 
achieved using our numerical technique and those achieved using the numerical technique discussed in [30] 
is introduced. The conclusions are given in Section 6. 

2. SHIFTED LEGENDRE ORTHONORMAL POLYNOMIALS 

We assume that the Legendre polynomial of degree k is denoted by Pk (z), and is defined on the interval 
(–1, 1).  Pk (z) may be generated by the recurrence formulae: 
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Introducing 1,2= −tz  the Legendre polynomials are defined on the interval (0,1) , which may be 

called shifted Legendre polynomials )(tPk
∗  and are generated using the following recurrence formulae 
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The orthogonality relation is  
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The explicit analytical form of shifted Legendre polynomial )(tPk
∗ of degree k  may be written as  
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Introducing the shifted Legendre orthonormal polynomials ),(12)();( tPktPtP kkk
∗+≡åå  we have  
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Any square integrable function )(ty  defined on the interval (0,1) , may be expressed in terms of 
shifted Legendre orthonormal polynomials )(tPk

å  as  
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from which the coefficients ky  are given by  
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If we approximate )(ty  by the first 1)( +N -terms, then we can write  
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which alternatively may be written in the matrix form:  
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3. OPERATIONAL MATRIX FOR FRACTIONAL DERIVATIVES 

In this section, we will state and prove the fractional derivative of the shifted Legendre orthonormal 
polynomial. 

THEOREM 3.1. The fractional derivative of order ν  of the shifted Legendre orthonormal polynomial 
vector )(tNΔ  is given by  
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is the fractional derivative of the function )(xf  in the Caputo sense, while )(νD  is the 
1)(1)( +×+ NN operational matrix of fractional derivative of order ν  and is defined by 

,

),(,2)(,1)(,0)(

),(,2)(,1)(,0)(

),(,2)(,1)(,0)(
0000

0000

=)(

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

ϒϒϒϒ

ϒϒϒϒ

ϒϒϒϒ

NNNNN

Niiii

Nnnnn
D

νννν

νννν

ννν

ν

 

 

where  



 A.H. Bhrawy, E.H. Doha, D. Baleanu, S.S. EZZ-Eldien, M.A. Abdelkawy 4 50 

.
1)()!()!1)((!)!(

)!()!(1)(1)1)(2(2=),,( 2
0== +−+−+−Γ−

++−
++ϒ

+++

∑∑ ννν lklljkkki
jlkiijkji

lkjij

l

i

nk  
(11) 

Proof. Using (4) and (10), the fractional derivative of order ν  for the shifted Legendre orthonormal 
polynomials )(tPi

å  is given by  
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Now we approximate ν−kt  by 1+N  terms of shifted Legendre orthonormal polynomials )(tPj
å  as: 
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Employing Eqs. (12)-(14), we have  
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where ),( jiϒ  is given by Eq. (11). Finally, we can rewrite Eq. (15) in a vector form as  
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Equation (16) completes the proof. 

3. THE NUMERICAL SCHEME 

In this section, we use the properties of the shifted Legendre orthonormal polynomials together with 
the operational matrix of fractional integrals in order to solve the following fractional optimal control 
problem 
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First, we approximate )(tx  by the shifted Legendre orthonormal polynomials )(tPi
å  as  
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where C is an unknown coefficients matrix that can be written as  
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Using Eq. (20), the dynamic constraint (18) may be written in the form  
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Using Eqs. (20) and (26), the performance index (17) may be written in the form  
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Finally, after computing the previous integration, we can use the Rayleigh-Ritz method to show that the 
necessary conditions for the optimality of the performance index are  
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The system of algebraic equations introduced above can be solved by using any standard iteration 
method for the unknown coefficients cj , j = 0,1, …, N.  Consequently, C given in (21) can be calculated. 
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4. NUMERICAL SIMULATION 

In order to show the efficiency and accuracy of the proposed numerical technique, we applied it to 
solve an example that was introduced in [30] and we compared the results obtained in [30] with those 
achieved using our technique. Consider the following fractional optimal control problem 
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value is equal to 0. The minimum value of J  achieved using our numerical technique is 95.81653 (10)−×  that 
is achieved at = 12N . In order to show that our numerical technique is better than that one introduced in 
[30], in Table 1 we compare the approximate values of the performance index J  obtained using our 
approach with those obtained in [30] at different values of N . Also, in Fig. 1, we plot the exact and 
approximate values of the state and control variables, respectively, while Fig. 2 shows the error functions of 
the state and control variables at = 20N . 

Table 1 

Approximate values of J at different choices of N 

N Our method Method in [30] 
4 64.76932 .10−  66.07530 .10−   
5 61.47243 .10−  61.67255 .10−   
6 75.37825 .10−  75.91532 .10−   
8 71.06099 .10−  71.21966 .10−   
9 85.44304 .10−  87.03371 .10−  

 

 
Fig. 1 – Exact and approximate state and control variables at N = 6. 
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Fig. 2 – Error functions of the state and control variables at N = 20. 

5. CONCLUSIONS 

In this paper, we have proposed a new numerical technique based on the shifted Legendre orthonormal 
polynomials to approximate the solution of the fractional optimal control problem (17)-(19). The operational 
matrix of fractional derivatives and the properties of the shifted Legendre orthonormal polynomials are used 
together with the Rayleigh-Ritz method to reduce the fractional optimal control problem into a solution of a 
system of algebraic equations, greatly simplifying the problem. The fractional derivatives are described in 
the Caputo sense. The main advantage of the proposed algorithm is that adding a few terms of the shifted 
Legendre orthonormal polynomials, a good approximation of the exact solution of the problem was 
achieved. In order to clarify the validity and accuracy of our technique and to show that it is more accurate 
than that one introduced in [30], a numerical example is shown with its approximate solution and a 
comparison is made between our results and those obtained in Ref. [30]. 

REFERENCES 

1. W. GRZESIKIEWICZ, A. WAKULICZ, A. ZBICIAK, Non-linear problems of fractional in modelling of mechanical systems, 
International Journal of Mechanical Sciences, 70, pp. 90–89, 2013.  

2. W.M. AHMAD, R. EL-KHAZALI, Fractional-order dynamical models of love, Chaos, Solitons Fractals, 33, pp. 1367–1375, 
2007.  

3. Y. JIANG, X. WANG, Y. WANG, On a stochastic heat equation with first order fractional noises and applications to finance,  
J. Math. Anal, Appl., 396, pp. 656–669, 2012.  

4. J.H. HE, Some applications of nonlinear fractional differential equations and their applications, Bull. Sci. Technol., 15, pp. 86–90, 1999.  
5. Y.A. ROSSIKHIN, M.V. SHITIKOVA, Applications of fractional calculus to dynamic problems of linear and nonlinear 

hereditary mechanics of solids, Appl. Mech. Rev., 50, pp. 15–67, 1997.  
6. R. LEWANDOWSKI, B. CHORAZYCZEWSKI, Identification of the parameters of the Kelvin-Voigt and the Maxwell fractional 

models, used to modeling of viscoelastic dampers, Comput. Struct., 88, pp. 1–17, 2010.  
7. N. SEBAA, Z.E.A. FELLAH, W. LAURIKS, C. DEPOLLIER, Application of fractional calculus to ultrasonic wave propagation 

in human cancellous bone, Signal Processing, 86, pp. 2668–2677, 2006.  
8. S.B. YUSTE, L. ACEDO, K. LINDENBERG, Reaction front in an A + B→ C reaction-subdiffusion process, Phys. Rev. E, 69, 

036126, 2004.  
9. J.A. TENREIRO MACHADO, P. STEFANESCU, O. TINTAREANU, D. BALEANU, Fractional calculus analysis of the cosmic 

microwave background, Romanian Reports in Physics, 65, pp. 316–323, 2013.  
10. V.E. TARASOV, Fractional vector calculus and fractional Maxwell’s equations, Annals of Physics, 323, pp. 2756–2778, 2008. 
11. E.H. DOHA, A.H. BHRAWY, S.S. EZZ-ELDIEN, Efficient Chebyshev spectral methods for solving multi-term fractional orders 

differential equations, Appl. Math. Model., 35, pp. 5662–5672, 2011.  
12. A. KADEM, Y. LUCHKO AND D. BALEANU, Spectral method for solution of the fractional transport equation, Reports on 

Mathematical Physics, 66, pp. 103–115,  2010.  
13. A.H. BHRAWY, A.A. AL-ZAHRANI, Y.A. ALHAMED, D. BALEANU, A new generalized Laguerre-Gauss collocation 

scheme for numerical solution of generalized fractional Pantograph equations, Romanian Journal of Physics, 59, pp. 646–657, 2014. 
14. A.H. BHRAWY, D. BALEANU, A spectral Legendre-Gauss-Lobatto collocation method for a space-fractional advection 

diffusion equations with variable coefficients, Reports on Mathematical Physics, 72,  pp. 219–233, 2013. 



 A.H. Bhrawy, E.H. Doha, D. Baleanu, S.S. EZZ-Eldien, M.A. Abdelkawy 8 54 

15. E.H. DOHA, A.H. BHRAWY, S.S. EZZ-ELDIEN, A new Jacobi operational matrix: An application for solving fractional 
differential equations, Appl. Math. Model., 36,  pp. 4931–4943, 2012.  

16. E.H. DOHA, D. BALEANU, A.H. BHRAWI, R.M. HAVEZ, A Jacobi collocation method for Troesch’s problem in plasma 
physics, Proc. Romanian Acad. A, 15, pp. 130–138, 2014. 

17. JOSÉ FRANCISCO GÓMEZ AGUILAR, DUMITRU BALEANU, Solutions of the telegraph equations using a fractional 
calculus approach, Proc. Romanian Acad. A, 15, pp. 27–34, 2014. 

18. D. ROSTAMY, M. ALIPOUR, H. JAFARI, D. BALEANU, Solving multi-term orders fractional differential equations by 
operational matrice of BPs with convergence analysis, Romanian Reports in Physics, 65, pp. 334–349, 2013.  

19. A.K. GOLMANKHANEH, N.A. PORGHOVEH, D. BALEANU, Mean square solutions of second-order random differential 
equations  by using homotopy analysis method, Romanian Reports in Physics, 65, pp. 350–362, 2013. 

20. E.H. DOHA, A.H. BHRAWY, S.S. EZZ-ELDIEN, Numerical approximations for fractional diffusion equations via a Chebyshev 
spectral-tau method, Cent. Eur. J. Phys., 11, pp. 1494–1503, 2013.  

21. A.H. BHRAWY, E.H. DOHA, D. BALEANU, S.S. EZZ-ELDIEN, A spectral tau algorithm based on Jacobi operational matrix 
for numerical solution of time fractional diffusion-wave equations, J. Comput. Phys.; doi.org/10.1016/j.jcp.2014.03.039, 2014.  

22. E.H. DOHA, A.H. BHRAWY, D. BALEANU, M.A. ABDELKAWY, Numerical treatment of coupled nonlinear hyperbolic 
Klein-Gordon equations, Romanian Journal of Physics, 59, pp. 247–264, 2014. 

23. E.H. DOHA, A.H. BHRAWY, D. BALEANU, M.A. ABDELKAWY, An accurate Legendre collocation scheme for coupled 
hyperbolic equations with variable coefficients, Romanian Journal of Physics, 59, 408–420, 2014. 

24. G.M. MOPHOU, Optimal control of fractional diffusion equation, Comput. Math. Appl., 61, pp. 68–78, 2011.  
25. R. DORVILLE, G.M. MOPHOU, V.S. VALMORIN, Optimal control of a nonhomogeneous Dirichlet boundary fractional 

diffusion equation, Comput. Math. Appl., 62, pp. 1472–1481, 2011.  
26. O.P. AGRAWAL, A quadratic numerical scheme for fractional optimal control problems, Journal of Dynamic Systems, 

Measurement and Control, 130, 0110, 2008.  
27. O.P. AGRAWAL, D. BALEANU, A Hamiltonian formulation and a direct numerical scheme for fractional optimal control 

problems, J. Vib. Control, 13, pp. 1269–1281, 2007.  
28. C. TRICAUD, Y.Q. CHEN, An approximation method for numerically solving fractional order optimal control problems of 

general form, Comput. Math. Appl., 59, pp. 1644–1655, 2010.  
29. M.A.E. HERZALLAH, Variational calculus with fractional and classical derivatives, Romanian Journal of Physics, 57,  

pp. 1261–1269, 2012.  
30. A. LOTFI, S.A. YOUSEFI, M. DEHGHAN, Numerical solution of a class of fractional optimal control problems via the 

Legendre orthonormal basis combined with the operational matrix and the Gauss quadrature rule, J. Comput. Appl. Math., 
250,  pp. 143–160, 2013.  

31. R. DORVILLE, G.M. MOPHOU, V.S. VALMORIN, Optimal control of a nonhomogeneous Dirichlet boundary fractional 
diffusion equation, Comput. Math. Appl., 62, pp. 1472–1481, 2011. 

 
Received September 12, 2014 


