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The study of numerical solutions of nonlinear coupled hyperbolic partial dif-
ferential equations (PDEs) with variable coefficients subject to initial-boundary con-
ditions continues to be a major research area with widespread applications in modern
physics and technology. One of the most important advantages of collocation method is
the possibility of dealing with nonlinear partial differential equations (NPDEs) as well
as PDEs with variable coefficients. A numerical solution based on a Legendre colloca-
tion method is extended to solve nonlinear coupled hyperbolic PDEs with variable co-
efficients. This approach, which is based on Legendre polynomials and Gauss-Lobatto
quadrature integration, reduces the solving of nonlinear coupled hyperbolic PDEs with
variable coefficients to a system of nonlinear ordinary differential equations that is far
easier to solve. The obtained results show that the proposed numerical algorithm is
efficient and very accurate.

Key words: Nonlinear coupled hyperbolic partial differential equations; Nonli-
near phenomena; Collocation method; Gauss-Lobatto quadrature.

PACS: 02.30.Gp, 02.30.Hq, 02.30.Jr, 02.30.Mv, 02.60.-x.

1. INTRODUCTION

For several decades, analytical and numerical methods have been developed
to obtain more accurate solutions of differential and integral equations [1]-[17]. The
spectral method [18–22] is one of the family of weighted residual numerical methods
for solving various problems, including variable coefficient and nonlinear differential
equations [23, 24], integral equations [25, 26], fractional orders differential equations
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2 Accurate Legendre collocation scheme for coupled hyperbolic equations 409

[27–29] and function approximation and variational problems [30]. The collocation
method [31–34] can be classified as a special type of spectral methods. In the last
few years, the collocation method has been introduced as a powerful approximation
method for numerical solutions of all kinds of initial boundary-value problems.

Coupled hyperbolic systems have a wide ange of applications in physics [35–
39], such as microwave processes, electromagnetism, electrodynamics, acoustics,
thermo elasticity, electrical engineering, fluid dynamics, polymer science, reaction-
diffusion, and population dynamics. Analytical study of variable coefficient mixed
hyperbolic partial differential problems is discussed in [40]. Other numerical meth-
ods based on numerical integration techniques [41] are used to numerically solve
different types of hyperbolic partial differential problems. In [42, 43], finite dif-
ference schemes are considered to numerically solve hyperbolic equations. Cubic
B-spline collocation method on the uniform mesh points was used in [44] to numer-
ically solve the nonlinear one-dimensional Klein-Gordon equation. There are also
numerous results on studying the solitary and periodic wave solutions for several
types of hyperbolic Klein-Gordon equations (see, for instance, Refs. [45–47]).

There are no results on Legendre-Gauss-Lobatto collocation (L-GL-C) method
for solving nonlinear coupled hyperbolic PDEs with variable coefficients subject to
initial boundary conditions. Therefore, the objective of this work is to present this
method to numerically solve some nonlinear coupled hyperbolic PDEs with variable
coefficients. By using collocation method, exponential convergence for the spatial
variables can be achieved for approximating the solution of some PDEs. The com-
puterized mathematical algorithm is the main key to apply this method for solving
the problem. Two illustrative problems with various kinds of exact solutions such as
triangular and soliton solutions are presented for demonstrating the high accuracy of
this numerical scheme.

A brief outline of this paper is as follows. We present some properties of Leg-
endre polynomials in the next section. In Section 3, we propose an efficient algo-
rithm to solve coupled nonlinear hyperbolic PDEs with initial-boundary conditions.
In Section 4, the proposed method is applied to two different test problems to show
the accuracy of our method. In the last section, we present our conclusions.

2. LEGENDRE POLYNOMIALS

Some basic properties of Legendre polynomials have been recalled in this sec-
tion. The Legendre polynomials Lk(x) (k=0,1 . . . ,) satisfy the following Rodrigues
formula

Lk(x) =
(−1)k

2kk!
Dk((1−x2)k), (1)
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410 E.H. Doha et al. 3

we recall also that Lk(x) is a polynomial of degree k and therefore L
(q)
k (x) (the q-th

derivative of Lk(x)) is given by

L
(q)
k (x) =

k−q∑
i=0(k+i=even)

Cq(k,i)Li(x), (2)

where

Cq(k,i) =
2q−1(2i+1)Γ[ q+k−i

2 ]Γ[ q+k+i+1
2 ]

Γ[q]Γ[2−q+k−i
2 ]Γ[3−q+k+i

2 ]
.

The Legendre polynomials satisfy the following relations

L0(x) = 1, L1(x) = x, Lk+2(x) =
2k+3

k+2
xLk+1(x)−

k+1

k+2
Lk(x)

and the orthogonality relation

(Lk(x),Ll(x))w =

1∫
−1

Lk(x)Ll(x)w(x) = hkδlk. (3)

where w(x) = 1, hk = 2
2k+1 . The Legendre-Gauss-Lobatto quadrature has been used

to evaluate the previous integrals accurately. For any ϕ ∈ S2N−1[−1,1], we have that

1∫
−1

ϕ(x)dx=

N∑
j=0

ϖN,jϕ(xN,j). (4)

We introduce the following discrete inner product

(u,v)w =

N∑
j=0

u(xN,j)v(xN,j)ϖN,j , (5)

where xN,j (0≤ j ≤N ) and ϖN,j (0≤ j ≤N ) are used as the nodes and the corres-
ponding Christoffel numbers in the interval [−1,1], respectively.

3. THE PROBLEM AND THE NUMERICAL ALGORITHM

In this section, we approximate the solution of coupled nonlinear hyperbolic-
type equations with variable coefficients for space variable by using the Legendre
collocation method. In what follows, we propose an efficient numerical algorithm to
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4 Accurate Legendre collocation scheme for coupled hyperbolic equations 411

solve the coupled nonlinear hyperbolic-type equations in the following form:

D2
t u(y, t) =γu(y,t)v(y, t)(Dyu(y,t)+Dtu(y, t)+Dyv(y,t)+Dtv(y,t))

+g1(y,t)D
2
yu(y,t)+g2(y,t),

D2
t v(y, t) =δu(y,t)v(y,t)(Dyu(y,t)+Dtu(y,t)+Dyv(y,t)+Dtv(y, t))

+g3(y,t)D
2
yv(y,t)+g4(y,t), (y,t) ∈ [A,B]× [0,T ],

(6)

related to the initial conditions
u(y,0) = f1(y), v(y,0) = f2(y),

Dtu(y,0) = f3(y), Dtv(y,0) = f4(y), y ∈ [A,B],
(7)

and the boundary conditions

u(A,t) = k1(t), u(B,t) = k2(t),

v(A,t) = k3(t), v(B,t) = k4(t), t ∈ [0,T ].
(8)

We start with the transformations x= 2
B−Ay+

A+B
A−B , w(x,t) = u(y,t), z(x,t) =

v(y,t). The problem (6)-(8) will be a new one in the spatial variable x ∈ [−1,1].
This transformation enables us to ease the using of the Legendre collocation method
on [−1,1],

D2
tw(x,t) =γw(x,t)z(x,t)

(2(Dxw(x,t)+Dxz(x,t))

B−A
+Dtw(x,t)+Dtz(x,t)

)
+

4g5(x,t)D
2
xw(x,t)

(B−A)2
+g6(x,t),

D2
t z(x,t) =δw(x,t)z(x,t)

(2(Dxw(x,t)+Dxz(x,t))

B−A
+Dtw(x,t)+Dtz(x,t)

)
+

4g7(x,t)D
2
xz(x,t)

(B−A)2
+g8(x,t), (x,t) ∈ [−1,1]× [0,T ],

(9)

subject to a new set of initial and boundary conditions

w(x,0) = f5(x), Dtw(x,0) = f7(x),

z(x,0) = f6(x), Dtz(x,0) = f8(x), x ∈ [−1,1],
(10)

w(−1, t) = k1(t), w(1, t) = k2(t),

z(−1, t) = k3(t), z(1, t) = k4(t), t ∈ [0,T ]. (11)

Now, we are interested in using the L-GL-C method to transform the previous cou-
pled PDEs into a system of ODEs. In order to do this, we approximate the spatial
variable using L-GL-C method at some nodal points. The node points are the set of
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412 E.H. Doha et al. 5

points in a specified domain where the dependent variable values are approximated.
We take the roots of the Legendre orthogonal polynomials referred to as Legendre
collocation points, which gives particularly accurate solutions for the spectral meth-
ods. Now, we outline the main steps of the L-GL-C method for solving a hyperbolic
problem. Let us expand the dependent variable in a Legendre series,

w(x,t) =

N∑
j=0

aj(t)Lj(x), z(x,t) =

N∑
j=0

bj(t)Lj(x), (12)

and in virtue of equations (3)-(5), we evaluate aj(t) and bj(t) by

aj(t) =
1

hj

1∫
−1

w(x,t) Lj(x)dx, bj(t) =
1

hj

1∫
−1

z(x,t) Lj(x)dx. (13)

For any positive integer N , SN [−1,1] stands for the set of polynomials of degree at
most N . Thanks to (4), the coefficients aj(t) in terms of the solution at the colloca-
tion points can be approximated by

aj(t) =
1

hj

N∑
i=0

Lj(xN,i)ϖN,iw(xN,i, t), bj(t) =
1

hj

N∑
i=0

Lj(xN,i)ϖN,i z(xN,i, t).

(14)

Due to (14), the approximate solution can be written as

w(x,t) =

N∑
i=0

( N∑
j=0

1

hj
Lj(xN,i)Lj(x)ϖN,i

)
w(xN,i, t),

z(x,t) =

N∑
i=0

( N∑
j=0

1

hj
Lj(xN,i)Lj(x)ϖN,i

)
z(xN,i, t).

(15)

Furthermore, if we differentiate (15) once, and evaluate it at the first N+1 Legendre
Gauss-Lobatto collocation points, it is easy to compute the first spatial partial deriva-
tive of the numerical solution in terms of the values at theses collocation points as

Dxw(xN,n, t) =

N∑
i=0

Aniw(xN,i, t), Dxz(xN,n, t) =

N∑
i=0

Ani z(xN,i, t), (16)

where

Ani =

N∑
j=0

1

hj
Lj(xN,i)(Lj(x))

′
ϖN,i, (17)
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6 Accurate Legendre collocation scheme for coupled hyperbolic equations 413

Proceeding as in the previous step, one can obtain the second spatial partial derivative
as

D2
xw(xN,n, t) =

N∑
i=0

Bniw(xN,i, t), D2
xz(xN,n, t) =

N∑
i=0

Bniz(xN,i, t), (18)

where

Bni =

N∑
j=0

1

hj
Lj(xN,i)(Lj(x))

′′
ϖN,i. (19)

In the proposed L-GL-C method the residual of (9) is set to zero at N−1 of Legendre-
Gauss-Lobatto points, moreover, the boundary conditions (11) will be enforced at the
two collocation points −1 and 1. Therefore, the approximation of (9)-(11) is

ẅn(t) =

4g5(xN,n, t)g6(xN,n, t)
N∑
i=0

Bniwi(t)

(B−A)2
−γwn(t)zn(t)(ẇn(t)+ żn(t))

+

2γwn(t)zn(t)
( N∑
i=0

Ani(wi(t)+ zi(t))
)

B−A

z̈n(t) =
4g7(xN,n, t)g8(xN,n, t)

N∑
i=0

Bnizi(t)

(B−A)2
− δwn(t)zn(t)(ẇn(t)+ żn(t))

+

2δwn(t)zn(t)
( N∑
i=0

Ani(wi(t)+zi(t))
)

B−A
, n= 1, · · · ,N −1,

(20)

where wk(t) = w(xN,k, t), zk(t) = z(xN,k, t), k = 1, · · · ,N − 1. This approach
provides a (2N−2) system of second order ODEs in the expansion coefficients aj(t),
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414 E.H. Doha et al. 7

bj(t),

ẅn(t) =

4g5(xN,n, t)g6(xN,n, t)
N∑
i=0

Bniwi(t)

(B−A)2
−γwn(t)zn(t)(ẇn(t)+ żn(t))

+

2γwn(t)zn(t)
( N∑
i=0

Ani(wi(t)+zi(t))
)

B−A

z̈n(t) =
4g7(xN,n, t)g8(xN,n, t)

N∑
i=0

Bnizi(t)

(B−A)2
− δwn(t)zn(t)(ẇn(t)+ żn(t))

+

2δwn(t)zn(t)
( N∑
i=0

Ani(wi(t)+ zi(t))
)

B−A
,

(21)

with the following initial conditions wn(0) = f5(xN,n), ẇn(0) = f7(xN,n), zn(0) =
f6(xN,n), and żn(0) = f8(xN,n). Otherwise, we can write the previous system as:

ẅ1(t)
ẅ2(t)
· · ·
· · ·

ẅN−1(t)
z̈1(t)
z̈2(t)
· · ·
· · ·

z̈N−1(t)


=



F1(t,w(t),z(t), ẇ(t), ż(t))
F2(t,w(t),z(t), ẇ(t), ż(t))

· · ·
· · ·

FN−1(t,w(t),z(t))
G1(t,w(t),z(t), ẇ(t), ż(t))
G2(t,w(t),z(t), ẇ(t), ż(t))

· · ·
· · ·

GN−1(t,w(t),z(t))


(22)

with

w1(0)
w2(0)
· · ·
· · ·

wN−1(0)
z1(0)
z2(0)
· · ·
· · ·

zN−1(0)


=



f5(xN,1)
f5(xN,2)

· · ·
· · ·

f5(xN,N−1)
f6(xN,1)
f6(xN,2)

· · ·
· · ·

f6(xN,N−1)


;



ẇ1(0)
ẇ2(0)
· · ·
· · ·

ẇN−1(0)
ż1(0)
ż2(0)
· · ·
· · ·

żN−1(0)


=



f7(xN,1)
f7(xN,2)

· · ·
· · ·

f7(xN,N−1)
f8(xN,1)
f8(xN,2)

· · ·
· · ·

f8(xN,N−1)


, (23)
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8 Accurate Legendre collocation scheme for coupled hyperbolic equations 415

(a) (b)

Fig. 1 – (a) The space-time graph of the approximate solution ũ of problem (25) at N = 12; (b) The
space-time graph of the approximate solution ṽ of problem (25) at N = 12.

where

Fn(t,w(t),z(t)) =

4g5(xN,n, t)g6(xN,n, t)
N∑
i=0

Bniwi(t)

(B−A)2
−γwn(t)zn(t)(ẇn(t)+ żn(t))

+

2γwn(t)zn(t)
( N∑
i=0

Ani(wi(t)+ zi(t))
)

B−A
,

Gn(t,w(t),z(t)) =

4g7(xN,n, t)g8(xN,n, t)
N∑
i=0

Bnizi(t)

(B−A)2
− δwn(t)zn(t)(ẇn(t)+ żn(t))

+

2δwn(t)zn(t)
( N∑
i=0

Ani(wi(t)+zi(t))
)

B−A
.

(24)

The system of second order (22)-(23) can be solved by using diagonally-implicit
Runge-Kutta-Nyström (DIRKN) method.

4. TEST PROBLEMS

We test the numerical accuracy of the proposed method by introducing two test
problems with different types of exact solutions.

RJP 59(Nos. 5-6), 408–420 (2014) (c) 2014-2014
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Fig. 2 – (a) The curves of approximate ũ and the exact u solutions for different values of t=0.1, 0.5, and
0.9 of problem (32) where N = 12 in the interval [0,1]; (b) The curves of approximate ũ and the exact
u solutions for different values of y=0.1, 0.5, and 0.9 of problem (32) where N = 12 in the interval
[0,1].
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Fig. 3 – (a) The curves of approximate ṽ and the exact v solutions for different values of t=0.1, 0.5, and
0.9 of problem (32) where N = 12 in the interval [0,1]; (b) The curves of approximate ṽ and the exact
v solutions for different values of y=0.0, 0.5, and 0.9 of problem (32) where N = 12 in the interval
[0,1].
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Table 1

N MAE1 RMSE1 Ne1 MAE2 RMSE2 Ne2
4 3.73×10−4 2.88×10−4 7.93×10−4 3.44×10−4 1.47×10−4 4.04×10−4

8 2.02×10−8 6.37×10−9 1.74×10−8 7.68×10−8 2.22×10−8 6.05×10−8

12 1.52×10−8 2.87×10−9 7.81×10−9 1.86×10−8 1.19×10−8 3.24×10−8

4.1. TRIANGULAR SOLUTION

As a first example, we consider the coupled nonlinear hyperbolic equations (6)
with the following functions

g1(y,t) =
(
1+et cos(y)

)
, g2 =

1

2
cos(t)

(
et−2γ cos(t+y)sin(t)

)
sin(2y),

g3(y,t) =
(
1+et sin(y)

)
, g4 =

1

2

(
et−2δ cos(t)cos(t+y)

)
sin(t)sin(2y),

(25)

subject to

k1(t) = sin(A)cos(t), k2(t) = sin(B)cos(t),

k3(t) = sin(t)cos(A), k4(t) = cos(B)sin(t),

f1(t) = sin(y), f2(t) = f3(t) = 0, f4(t) = cos(y).

(26)

The exact solutions of this problem are

u(y, t) = sin(y)cos(t), v(y,t) = sin(t)cos(y). (27)

The absolute errors in the given tables are

E(y,t) = |u(y,t)− ũ(y,t)|, (28)

where u(y,t) and ũ(y,t) are the exact and approximate solutions at the point (y,t),
respectively. Moreover, the maximum absolute error is given by

ME = Max{E(y,t) : ∀(y,t) ∈ [A,B]× [0,T ]}. (29)

The root-mean-square (RMS) and Ne errors may be given by:

RMS =

√√√√ N∑
i=0

(u(xN,i), ti)− ũ(xN,i), ti)2

N +1
, (30)

Ne =

√∑N
i=0(u(xN,i), ti)− ũ(xN,i), ti)2∑N

i=0(u(xN,i), ti)
. (31)

RJP 59(Nos. 5-6), 408–420 (2014) (c) 2014-2014



418 E.H. Doha et al. 11

Table 2

N MAE1 RMSE1 Ne1 MAE2 RMSE2 Ne2
4 1.35×10−3 4.35×10−4 6.13×10−4 2.63×10−3 1.51×10−3 2.15×10−3

8 1.61×10−6 9.88×10−7 1.40×10−6 9.83×10−7 4.12×10−7 5.84×10−7

12 7.44×10−8 3.33×10−8 4.70×10−8 9.30×10−8 3.95×10−8 5.59×10−8

Maximum absolute, root-mean-square and Ne errors of (25) are introduced in Table1
using L-GL-C method with three different choices of N, in the interval [0,1]. The
approximate solutions ũ and ṽ of problem (25) at N = 12 have been plotted in Figs.
1(a) and 1(b), respectively.

4.2. SOLITON SOLUTION

Second, we consider the coupled nonlinear hyperbolic equation (6) with the
following functions

g1(y,t) =
(
1+et cos(y)

)
, g3(y,t) =

(
1+ et sin(y)

)
,

g4 =−2sech(y+ t)2
(
sech(y+ t)−et sin(y)− tanh(y+ t)

)
tanh(y+ t),

g2 = sech(y+ t)(sech(y+ t)− tanh(y+ t))×(
−2sech(y+ t)tanh(y+ t)+et cos(y)(sech(y+ t)+tanh(y+ t))

)
,

(32)

subject to

k1(t) = sech(A+ t), k2(t) = sech(B+ t),

k3(t) = tanh(A+ t), k4(t) = tanh(B+ t),

f1(t) = sech(y), f2(t) = tanh(y),

f3(t) =−sech(y)tanh(y), f4(t) = sech(y)2.

(33)

The exact solutions are

u(y, t) = sech(y+ t), v(y,t) = tanh(y+ t). (34)

In Table2, we show the maximum absolute, root-mean-square and Ne errors of (32)
for various choices of N, in the interval [0,1]. We plotted the curves of approximate
and exact solutions of ũ at different values of y and t in Figs. 2(a) and 2(b), respecti-
vely. Moreover, from Figs. 3(a) and 3(b), we see that the curves of the approximate
and exact solutions (ṽ and v) almost coincide for different values of y and t that are
listed in their captions.
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5. CONCLUSION

We have proposed an efficient and accurate numerical algorithm based on Le-
gendre-Gauss-Lobatto spectral method to get high accurate solutions for nonlinear
coupled hyperbolic equations. The method is based upon reducing the mentioned
problem into a system of second order ODEs in the expansion coefficient of the so-
lution. The use of the Legendre-Gauss-Lobatto points as collocation nodes saves the
spectral convergence for the spatial variable in the approximate solution. Numerical
examples were also provided to illustrate the effectiveness of the derived numerical
algorithm.
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