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Abstract:

In this paper three nonlinear force-free magnetic field equations such as the Liouville equation, Sine-Poisson

equation and Sinh-Poisson equation are studied by (G'/G)-expansion method and exact periodic solutions are extracted. In
all these cases the ratio of the current density and the magnetic field is not constant e.g. as happens in the solar atmosphere.
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1. Introduction

The study of nonlinear evolution equations (NLEEs)
appear everywhere in applied mathematics and theoretical
physics including engineering sciences and biological sci-
ences. These equations play a key role in describing key
scientific phenomena. A force-free magnetic field problem
is one of the very important fields, which arises as a special
case from the magnetostatic equation in plasmas; which
can be written in the form:

V2¢>+(B;'> =0, (1)

where ¢ is denoted as flux function and B, is the compo-
nent of the magnetic field along the direction z, which is
identified by the unit vector e,. Moreover, the symbol ’
denotes derivative with respect to the argument ¢ and B, is
an arbitrary function of ¢ [1]. A general form of the energy
integral of semicircularly arched force-free magnetic fields
has been studied based on the energy principle in [2—4].
Amari et al. [5] have studied different mathematical
problems of the solar coronal magnetic field as a force-free
magnetic field. Boulmezaoud and Amari [6] have used
finite-element method for computing some nonlinear
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problems of force-free fields. Romashets and Vandas [7]
have studied force-free magnetic field in a cylindrical flux
rope without a constant alpha . Khater et al. [1] have
studied several problems of force-free magnetic field by
using generalized tanh method. In all those cases, the ratio
of the current density and the magnetic field is not constant.

Recently, a number of methods have been proposed,
namely mapping method [8], Jacobi elliptic function
method [9], the homogeneous balance method [10-12], the
hyperbolic tangent function expansion method [13-15], the
trial function method [16, 17], the nonlinear transformation
method [18, 19] and sine-cosine method [20]. However,
these methods can only obtain the shock and solitary wave
solutions and can not obtain the periodic solutions of
nonlinear wave equations. Although Porubov and others
[21-23] have obtained some exact periodic solutions to
some nonlinear wave equations, using the Weierstrass
elliptic function.

Wang et al. [24] have introduced the (G'/G)-expansion
method for a reliable treatment of the nonlinear wave
equations. The (G'/G)-expansion method plays an impor-
tant role to find the exact solutions of nonlinear wave
equations in the nonlinear problems [25-30].

In this article, we find the exact solution of two-
dimensional force-free magnetic fields described by Liou-
ville equation, Sinh-Poission equation and Sine-Poission
equation using the (G'/G)-expansion method. It is shown
here that the main merits of the (G'/G)-expansion method
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over the other methods are that it gives more general
solutions with some free parameters which, by suitable
choice of the parameters, turn out to be some known
solutions gained by the existing methods.

2. Description of the (G'/G)-expansion method

In this section we describe the (G'/G)-expansion method
for finding travelling wave solutions of nonlinear evolution
equations. Suppose that a nonlinear equation, say in two
independent variables x and y, is given by

) =0, 2)

where u# = u(x, y) is an unknown function, P is a polyno-
mial in # = u(x, y) and its various partial derivatives, in
which the highest order derivatives and nonlinear terms are
involved. In the following we give the main steps of the
(G'/G)-expansion method.

P(Lt, Uy, Uy, Uyy,y Uy, Uxxy - -

i. We seek traveling wave solutions of Eq. (2) by taking
u(x,t) =UQ), (=hkx+vy,

and transform Eq. (2) to the ordinary differential equation
o, u,u" u”,...)=0, (3)

where prime denotes the derivative with respect to .

ii. Then we integrate Eq. (3) term by term one or more
times. This yields constant(s) of integration. For
simplicity, the integration constant(s) can be set to
zero.

iii. We introduce the solution U({) of Eq. (3) in the finite
series form

m I\ I
v => (). @)
i=0 G

where a; are real constants with a,, # 0 to be determined,
m is a positive integer to be determined. The function G({)
is the solution of the auxiliary linear ordinary differential
equation

G"+ BG + uG =0, (5)

iv. We determine m, this usually can be accomplished by
balancing the linear term(s) of highest order with the
highest order nonlinear term(s) in Eq. (3).

v. Then substitution of Eqgs. (4) and (5) into Eq. (3) yields
an algebraic equation involving powers of (G'/G).
Equating the coefficients of each power of (G'/G) to
zero gives a system of algebraic equations for a;, B, 1,

k and v. Then, we solve the system with the aid of a
computer algebra system , such as Mathematica, to
determine these constants. On the other hand, depend-

ing on the sign of the discriminant A = 8% — 4y, the
solutions of Eq. (5) are well known to us. So, as a final
step, we can obtain exact solutions of the given Eq. (2).

3. Two-dimensional force-free magnetic fields
described by Liouville equation

Considering the choice B, = ¢?, Eq. (1) turns into the
nonlinear Liouville equation

Vi = e, (6)
and taking the transformation

e =u,

Equation (6) becomes

()* + (u,)* — ity — untyy, — 20> = 0. (7)
Using the wave variable

u(x,y) = U(0), (3)

carries the partial differential equation (PDE) given by
Eq. (7) into the ordinary differential equation (ODE)

{=kx+vy,

(K2 +v)UU" — (K +v*)(U')* +2U° = 0. (9)

Balancing the term UU” with the term U® we obtain N = 2
then

2
U() =Y _ai(G/G) = ao+ai(G'/G) + ar(G'/G).

i=0
(10)

Substituting Eq. (10) into Eq. (9) and comparing the
coefficients of each power of (G'/G) in both sides, to get an
over-determined system of nonlinear algebraic equations
with respect to a;, f, u, k and v. Solving the over-
determined system of nonlinear algebraic equations by
using Mathematica, we obtain

apg = —ﬂ(kz—f—vz), ap = —(k2+v2) and (]1)
a = 7[3(]{2 + Vz).

The solution of Eq. (9) reads
U=ay+a(G/G)+a)(G/G)*. (12)

For > — 4u > 0, the solution of Eq. (9) reads
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The solution of Eq. (6) given the flux as

2

%sinh( v ﬁ22_4“ (kx + vy)) + gcosh< VI 4 (kx + vy))
2 —
2 Acosh( v ﬁ2274” (kx + vy)) + Bsinh(V ] (kx + vy))

2

%sinh( ﬂ;“” (kx + vy)) + Zcosh ( v ﬂz{““ (kx + vy))
2 2
Acosh< ﬁ274” (kx + vy)> +B sinh( v ﬁ274” (kx + vy))

For the special values k=1, f =B =0 and u <0, we
find the solution obtained in [1] for Liouville equation.
Moreover, Eq. (14) corresponds to an exact solution for a
force-free magnetic field with
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However for > — 4u < 0, the solution of Eq. (9) reads

+a (16)
The solution of Eq. (6) gives the flux as
2
2 2
: - S sin( v 4’;7’3 (kx + vy)) + & cos ( v 4’;7/} (kx + vy))
¢ =xInlax\/p° —4u
2 Acos<”4g_ﬁ2(kx+vy)>+Bsin<v4“ i (kx—i—vy))
(17)
2
. TAsin(V U (o + vy)> +5cos (—”4‘2‘"’ (ke + vy))
+ay +a\/4u—p =
Acos(v 4’;7[;“ (kx + vy)) —l—Bsm(v P (kx + vy))
Equation (17) corresponds to an exact solution for a force-
free magnetic field with
2smh(v (kx+vy)) +l—§cosh<v4" s (kx+vy)>
B, = |ap +a\/4u— B
A cosh( V- (kx + vy)) + Bsinh | V- i (kx + vy))
| (18)

272

4sinh (\/— (kx + vy)) +8cosh (W (kx + V)’)>
A cosh (@ (kx + vy)) + Bsinh <‘/‘?’7 (kx + vy))

+ ax\/4u — B
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Fig. 1 The flux function ¢(x, y)atk =v=1= — fand B = 0 for
Eq. (14)
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Fig. 2 The flux function (y = —1,0,1) atk=v=1= —f and

B = 0 for Eq. (14)

For the case /> — 4u = 0, the solution of Eq. (9) reads

U= B B ’ 19
_ao—‘ral(m)-’-ag(m) . ( )

The solution of Eq. (6) given the flux as

¢ = %ln [ao +a C%)

+a (m> 2 . (20)

Equation (20) corresponds to an exact solution for a
force-free magnetic field with

B
B, =

(21)

ao +a <A+B<kx+vy)) ta <A+B(Bk%LVy)> 2] 2'

Moreover, for ay, a; and a,, & = 04B, = B,. The B, and B,
components becomes

—k k
BX == ay¢ == TB’V == ;@x(f)

Figures 1-3 show the magnetic flux function, samples of
streamlines of the magnetic flux function (y = constant),
samples of streamlines of the magnetic flux function
(x = constant) and Contour plot of the magnetic flux
function corresponding to the solution of Eq. (14),
respectively. Moreover, Figs. 5-7 and Figs. 8-10, with
values of parameters listed in their captions, show the
force-free magnetic field, samples of streamlines of the
force-free magnetic field (y = constant) and samples of
streamlines of the force-free magnetic field (x = constant)
corresponding to the solution of Egs. (15) and (18),
respectively.

4. Two-dimensional force-free magnetic fields
described by Sinh-Poisson equation

If we take the choice B, = 4v/2cosh ¢, Eq. (1) turns into
the nonlinear sinh-Poisson equation

V2¢p = —2*sinh(¢h), (22)
taking the transformation

¢ _ o=@
e? =u where sinh(¢) = %

Equation (22) tends to

2(u2) 4 2(uy)* — 2wty — 2untyy, + 22 —u) =0.  (23)
Using the wave variable

{=hketvy, ulxy)=U()

turns the PDE given by Eq. (23) into the ODE

2K VY UU" =22 +v3)(U')? = 2(UP —U)=0.  (24)

Proceeding as in the previous case we obtain

(k2 +v?)
a; = _41727
V& 02 @k +12) - 22)
T (K +v2) ’
/(2 +2)(4ul? +42) - 72)
a, = 5 and
A
22— 4u(k? +?
g = I AY) (25)
J
or
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k> +?
a) = —4 7/{2 s oal ]
V& +02) (7 + (k2 +12))
ﬂ - (k2 + V2) ) -0.5+ B
5 S
/(2 ) (22 + 4u(k? +42))
a = 3 and -0.6 F ox=_ ]
j. x=0
"2 2 2 — x=1
A+ 4u(ks +v
ap = —#, (26) —07} ]
A
using Egs. (25) and (26), the solution of Eq. (24) reads T
U=ao+a(G/G)+a (G /G). (27) '

) Fig. 3 The flux function x = —1,0,1) at k=v=1= —f and
Three cases are arises B = 0 for Eq. (14)

case (a) for % — 4u > 0, the solution of Eq. (24) reads

U=ay+a = -
A cosh( /}274” C) + Bsmh< /3274” C>
(28)
2 /2
% B —4u smh( ﬁ2_4“ C) + g VI —4u cosh( /}2_4” C)
+ a2 2 2
A cosh( - g) +B smh( - g)
The solution of Eq. (22) gives the flux as
4sinh ( v [;22_4H (kx + vy)) + gcosh( v 1122_4” (kx + vy))
¢ =1nl|ag+an\/f* —4du -
A cosh( ﬁ;“” (kx + vy)) + Bsinh ( : ﬁz{“” (kx + vy))
2 (29)

gsinh( ﬁ2274“ (kx + vy)> + Scosh <”ﬁ224” (kx + vy))
2 . /B _
A cosh( P28 (o + vy)> + Bsinh (# (kx + vy))
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Equation (29) corresponds to an exact solution for a
force-free magnetic field with

4sinh (@ (kx + vy)) + Zcosh <\/—4“ (kx 4+ vy)) 2
A cosh (@ (kx + vy)) + Bsinh <‘/_ (kx + vy)>

B.=.Ax ZCoshln<a2 B —4u

! (30)
8 %‘sinh(v /,,22_4H (kx—i—vy)) —|—§cosh<v il (kx+vy))
+ap+ar\/ B —4u
A cosh< v ﬂ2274” (kx + vy)> + Bsinh (—V/}ZZM (kx + vy))
case (b) for > — 4u < 0, the solution of Eq. (22) given the
flux as
2
‘TAsm< V4 i (kx + vy)) + %cos( 4’2‘7/;2 (kx + vy))
¢ =In|ay\/4p—
Acos( gfﬂz (kx + vy)) —|—Bsin< VAT (kx + vy)>
(31)
2 2
s1n< P (fx + vy)) + S cos (—“";ﬁ (kx + vy)>
+ao+a\/4p— /3 =
Acos [ Y- i (kx + vy)) + Bsin (—Hg/j (kx + vy))
For the special values a, = —1, f* —4u= —4 and
ap = a; = 0, we find the solution obtained in Khater et al.
[1] for Sinh-Poisson equation. Also, Eq. (31) corresponds
to an exact solution for a force-free magnetic field with
. 2
- %sm(”’z‘ £ (kx+vy)>+§cos< b (kx—i—vy))
B, =A4x |2coshln|ayy/4u— ° X
Acos(v u i (kx—|—vy)> +Bsm< o i (kx + vy)>
(32)

1
2
‘TAsin< 4’2‘7132 (kx + vy)) —|—§cos< 45752 (kx + vy))
+ ap + ay\/4u — ) .

Acos(V 4’2‘7132 (kx+vy)) +Bsin<” 4‘2‘7/32 (kx + vy)
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case (c) for 52 — 4p = 0, the solution of Eq. (22) reads

B B \’
U =ap+a (m) +ar (m) . (33)

The solution of Eq. (22) gives the flux as

¢=1In

(34)

Equation (34) corresponds to an exact solution for a
force-free magnetic field with

Gt (A —l—B(]lj)H- vy)> T (A +B(Iljx+ vy)ﬂ '

5. Two-dimensional force-free magnetic fields
described by Sine-Poisson equation

Taking the choice B, = Av/2cos ¢, Eq. (1) turns into the
nonlinear sin-Poisson Equation

V2p = 22 sin(¢). (36)
Taking the transformation

sin(¢) =

el — 1o

h
where %

& =u

Equation (36) tends to
2(u)* + 2(uy)* — 2uttyy — 2untyy + 22 —u) = 0. (37)

B, = 4, |2coshln

B
“°+“‘<A+B(kx+vy>> +“2<A+B(

Tw)) 2] . (35)

Moreover o = (/sinh¢)/\/2cosh . Thus o becomes zero
for ¢ =0, and it becomes infinite when ¢ does. B,
becomes singular when ¢ does. The B, and B, components
becomes

—k k
Bx = 6),(;5 = TB} = ;ax(]’)

Fig. 4 The contour plot of ¢(x,y) atk=v=1= —fand B=0
for Eq. (14)

Using the wave variable

{=hketvy, ulxy)=U(0),

turns the PDE given by Eq. (37) into the ODE

202 +VHUU" = 2(K* + V) (U = 22(UP —U)=0. (38)

Proceeding as in the previous case we obtain

(kK> ++?)
e
V@ + e + 1) - 2)
== 2.2 )
(k% +v?) (39)
4/ + ) (@u(k2 +12) — 12)
a, = 5 and
A
22 Au(k* +1?)
ap 2 )
A
or
k? 4 v?
a; = 4 /12 y
V2 +92) (2 + 4k +12))
== 2 1.2 ’
(k2 +v?) (40)
4/ + V) (22 + 4u(k2 +12))
a, = 5 and
A
4+ 4u(k® +?)
ag = ————-s—o-
2
using Egs. (39) and (40) the solution of Eq. (38) reads
U =ay+a(G/G)+a) G /G). (41)
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Three cases may be considered:
case (a) for [)’2 — 4u > 0, the solution of Eq. (36) reads

(42)

case (b) for f> — 4u <0

§l
=
)

‘—zAsin( L (kx+vy))+§cos< Al
u= |ay\/4u—p
Acos( 4,24—/3 (kx+vy)>+Bsm(”4’2‘ ﬁz(kx—kvy))

Asin (‘/g—(kx + vy)) + §COS< 4 (e + W))
+ag+a\/4u— B Acos<\/§—(kx+"3’)> +Bsm<\/ﬂ(kx+vy)>

b

(43)

case (¢) for f7 — 4u =0

B B \°
u=ay—+a (A——FBC) +a2<A—+BC> . (44)

For the above cases, the flux is given as
2
g fu+1
= 45
b =cos (5), (45)

with a force-free magnetic field

B.=J\/2cosp = ("2:1). (46)

This component becomes singular when u is singular.
Moreover o = —(/sin ¢)/+/2cos ¢. Thus o becomes zero
for ¢ = 0, and it becomes infinite when ¢ =nm, n is
Fig. 5 The force-free magnetic field B(x,y) at k=v=1= —f integer. B, becomes singular when u = 0. The B, and B,
and B = 0 for Eq. (15) components becomes
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Fig. 6 The force-free magnetic field (y = —1,0, Datk=v=1=

—p and B = 0 for Eq. (15)
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Fig. 7 The force-free magnetic field (x = —1,0, l)atk=v=1=

—p and B = 0 for Eq. (15)
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Fig. 8 The force-free magnetic field B,(x, y) atk=v=pu=f =1
and B = 0 for Eq. (18)
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Fig. 9 The force-free magnetic field (y = —1,0, atk=v=pu=
f =1and B = 0 for Eq. (18)
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Fig. 10 The force-free magnetic field (x = —1,0,1) at k=v =
uw=f=1and B =0 for Eq. (18)

As in the previous case, by taking special value of con-
stants, we find the solution obtained for Sine-Poisson
equation earlier [1], and therefore this result shows the
power of our method. Also in this paper we have found
several solutions which are different from the solutions in
[1]. This showed also that why various plots (Figs. 1-10)
of the present work are different from the plots reported
earlier [1].

6. Conclusions

Using various non-linear equations we have obtained sev-
eral force-free magnetic fields with non-constant o, the
ratio between current density and magnetic induction.
These fields may be of use in various situations, in par-
ticular in the solar or a stellar atmosphere where the
coronal fields often possess an arcade-like structure, so that
a two-dimensional analysis is appropriate. In most studies
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one has used a constant o for simplicity. However, this is
usually at best an approximate physical assumption, urging
for a variable a.
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