
1 
 

Towards a Spiking Neural P Systems OS 

 

Ammar Adl 

(ammaradl@gmail.com) 

Amr Badr 

(a.badr.fci@gmail.com)  

Ibrahim Farag 

(i.farag@gmail.com) 

 

Computer Science Department 

Faculty of Computers and information 

Cairo University 

 

 

Keywords:  Spiking Neural P systems, 

Operating System, logic Operations, Processing 

Neurons. 

Abstract 
 

This paper is an attempt to incorporate 

the idea of spiking neural P systems as an early 
seed into the area of Operating System Design, 

regarding their capability to solve some 

classical computer science problems. It is 
reflecting the power of such systems to simulate 

well known parallel computational models, like 

logic gates, arithmetic operation, and sorting. In 

these devices, the time (when the neurons fire 
and/or spike) plays an essential role. For 

instance, the result of a computation is the time 

between the moments when a specified neuron 
spikes. Seen as number computing devices, SN P 

systems are shown to be computationally 

complete, and with such capabilities, arithmetic 
operations, logic, and timing, some first steps 

could be taken towards an OS design. 
 

Introduction 
 

We introduce here only some notations 
and the notion of register machines, for an 

alphabet V, V *  denotes the set of all finite 

strings of symbols from V , the empty string is 

denoted by λ, and the set of all nonempty strings 

over V  is denoted by V+ . When V = {a} is a 

singleton, then we write simply a∗   and a+ 

instead of {a}*, {a} +. The length of a string x ∈ 

V * is denoted by |x|. The family of Turing 
computable sets of natural numbers is denoted 

by NRE and the family of semilinear sets of 

natural numbers is denoted by NREG.[4] 

 
A register machine is a construct M = 

(m, H, l0, lh, I), where m is the number of 

registers, H is the set of instruction labels, l0 is 
the start label (labeling an ADD instruction), lh  

is the halt label, and I is the set of instructions; 

each label from H labels only one instruction 
from I. The instructions are of the following 

forms:  

• l1: (ADD(r), l2, l3) (add 1 to register r and then 

go to one of the instructions with labels l2, l3),  
• l1: (SUB(r), l2, l3) (if register r is non-empty, 

subtract 1 from it and go to the instruction with  

Label l2, otherwise go to the instruction with 
label l3),  

• lh:  HALT (the halt instruction). [4] 

 
 A register machine M computes a 

number n in the following way: start with all 

registers empty (i.e., storing the number zero), 

we apply the instruction with label l0 and we 
proceed to apply instructions as indicated by the 

mailto:ammaradl@gmail.com
mailto:egphsharaf@gmail.com
mailto:i.farag@gmail.com


2 
 

labels (and made possible by the contents of 

registers); if we reach the halt instruction, then 
the number n stored at that time in the first 

register is said to be computed by M. The set of 

all numbers computed by M is denoted by N 

(M).  
 

 Register machines are universal also in 

the accepting mode; moreover, this is  true  even  
for  deterministic  machines,  having  ADD  rules  

of  the  form  l1 : (ADD(r), l2 , l3 )  with  l2  = l3 : 

after adding 1 to register r we pass precisely to 
one instruction, without any choice (in such a 

case, the instruction is written in the form l1  : 

(ADD(r), l2 )).   Again, without loss of 

generality, we may assume that in the halting 
configuration all registers are empty.  

 

  

Spiking neural P systems 
 

Definition: A spiking neural P system is a tuple: 

Π = (O, σ1, σ2, · · ·, σm, syn, in, out),  

Where:  

1.  O = {s} is the unary alphabet (s is known as 

a spike),  

2.  σ1, σ2 , · · · , σm are neurons, of the form σi 

= (   ,    ), 1 ≤ i ≤ m, where: 

     ≥ 0 is the initial number of spikes 

contained in σi, 

    is a finite set of rules of the 
following two forms:  

i. E /
bs s ; d, where E is a 

regular expression over s, b ≥ 1 

and d ≥ 1,  

ii.   → λ; 0  where λ is the empty 

word, e  ≥  1, and for all            

E/
bs s ; d from     

   ∉ L (E) where L (E) is the 

language defined by E,  

3.  syn ⊆ {1, 2, · · ·, m} × {1, 2, · · ·, m} are the 

set of synapses between neurons, where 

i ≠ j   for all (i, j) ∈ syn,  

4.  in, out ∈ { σ1, σ2 , · · ·, σm} are the input 

and output neurons respectively.  

 

 

In the same manner as in [3], spikes are 

introduced into the system from the environment 

by reading in a binary sequence (or word) w ∈ 

{0, 1}* via the input neuron σ1. The sequence 

w is read from left to right one symbol at each 

timestep. If the read symbol is 1 then a spike 

enters the input neuron on that timestep.  

 
 A firing rule r = E/ bs s ; d is 
applicable in a neuron σi if there are j ≥ b spikes 
in σi and     ∈ L (E) where L (E) is the set of 
words defined by the regular expression E. If, at 
time t, rule r is executed then b spikes are 
removed from the neuron, and at time t + d − 1 
the neuron fires. When a neuron σi  fires a spike 
is sent to each neuron σi  for every synapse (i, j) 
in Π. Also, the neuron σi remains closed and 
does not receive spikes, until time t + d − 1 and 
no other rule may execute in σi until time t + d. 
 

 This does not affect the operation as the 

neuron fires at time t + d − 1 instead of t + d. A 

forgetting rule r′ =    → λ; 0 is applicable in a 

neuron σi if there are exactly e spikes in σi. If r′ 

is executed then e spikes are removed from the 

neuron. At each timestep t a rule must be applied 

in each neuron if there are one or more 

applicable rules at time t. Thus while the 

application of rules in each individual neuron is 

sequential the neurons operate in parallel with 
each other.  

 

 Note that there may be two rules of the 

form E/  → s; d, that are applicable in a single 

neuron at a given time. If this is the case then the 

next rule to execute is chosen non-
deterministically. The output is the time between 

the first and second spike in the output neuron 

σm.  

 An extended spiking neural P system 

has more general rules of the form E/  →    ; d, 

where b ≥ p ≥ 0. Note if p = 0 then E/  →    ; d 

is a forgetting rule. An extended spiking neural 

P system with exhaustive use of rules [4] applies 

its rules as follows. If a neuron σi contains k 

spikes and the rule  E/  →    ; d is applicable, 

then the neuron σi sends out gp spikes after d 



3 
 

time steps leaving u spikes in σi, where: 

k = bg + u, u < b and k, g, u∈ ℕ. Thus, a 

synapse in a spiking neural P system with 

exhaustive use of rules may transmit an arbitrary 

number of spikes in a single timestep. In the 
sequel we allow the input neuron of a system 

with exhaustive use of rules to receive an 

arbitrary number of spikes in a single timestep. 

This is a generalization on the input allowed by 
Ionescu et al. 

 

 In Korec’s notion of strong universality 
was adopted for small SN P systems. 

Analogously, some small SN P systems could be 

described as what Korec refers to as weak 
universality. However, it could be considered 

that Korec’s notion of strong universality is 

somewhat arbitrary and we also pointed out 

some inconsistency in his notion of weak 
universality. In the sequel each spike in a 

spiking neural P system represents a single unit 

of space. The maximum number of spikes in a 
spiking neural P system at any given timestep 

during a computation is the space used by the 

system. 

 

Addition  

 
Here is a simple SN P system that 

performs the addition of two natural numbers. It 

is composed of three neurons Figure 1, two input 
neurons and an addition neuron, which is also 

the output neuron. Both input neurons have a 

synapse to the addition neuron. Each input 
neuron receives one of the numbers to be added 

as a sequence of spikes, that encodes the number 

in binary form. As explained above, no spike in 
the sequence at a given time instant means 0 in 

the corresponding position of the binary 

expansion, whereas one spike means 1. The 

input neurons have only one rule,   → , which 
is used to forward the spikes to the addition 

neuron as soon as they arrive. The addition 

neuron has three rules:   → ,   /   → λ and 

   /  → , which are used to compute the result.  

Formally, the SN P system for 2-addition is 

defined as a structure: [5] 

 
 

 

     = (O,                       syn,    ,    , out) 

 

Where: 

 

 O = {a}; 

        = (0         )  with         = {  →  }; 

        = (0        )  with         = {  →  }; 

      = (0,     ) with  

     = { →     /  →λ,    /  →  }; 

 syn = {(      ,  Add ) , (       ,  Add ) } 

     =       ,     =       ; 

 out = Add. 

 

 

Fig. 1. An SN P system performs the addition among 

two natural numbers expressed in binary form [5] 

 

 

Checking Equality  
 

Since an SN P system produces a spike 

train, we will encode the output as follows: 

starting from an appropriate instant of time, at 
each computation step the system will emit a 

spike if and only if the two corresponding input 

bits (that were inserted into the system some 

time steps before) are equal. 
Stated otherwise, if we compare two n-bit 

numbers then the output will also be an n-bit 

number: if such an output number is 0, then the 
input numbers are equal, otherwise they are 

different. [5] 
 

 Bearing in mind these marks for 
equality and inequality, the design of the SN P 

system consists of three neurons: two input 

neurons, having   → , as the single rule, with a 
third neuron, the checking neuron. This 

checking neuron is also the output neuron, and it 

has only two rules:    → λ and   → .  

 
 



4 
 

 
 

Fig.2. An SN P system that compares two natural 
numbers of any length, expressed in binary form [5]. 

 

 

Simulating Logical Gates 
 

Using SNP systems can simulate logical 

gates. Input is given in one neuron while the 

output will be collected from the output neuron 
of the system. Boolean value 1 is encoded in the 

spiking system by two spikes, hence   , while 0 

is encoded as one spike. If the output neuron 
fires two spikes, in the second step of the 

computation, then the Boolean value computed 

by the system is 1 (hence true). If it fires only 

one spike, then the result is 0 (false). 
 

Boolean AND gate simulated by SN P systems 

as in [6]:  
 

      = ({a}, 

    = (0, {  → ; 0,    →       /  → ; 0}),   ). 

 

If in neuron 1 we introduce three spikes. 

This means we compute the logical AND 

between 1 and 0 (or 0 and 1). The only rule the 

system can use is    → ; 0 and one spike 

(hence the correct result - 0 in this case) is sent 
to the environment. 

 

If 4 spikes are introduced in neuron 1 
(the case 11), the output neuron will fire using 

the rule    /  → ; 0, and will send two spikes 
in the environment. The system with the input 

00 behaves similarly to the 01 or 10 cases.  If the 

output neuron, the rule    → ; 0 is changed 

with the rule    →  ; 0, this will lead to the OR 
gate. [6] 

 

For Boolean NOT gate it can be simulated by 
SNP systems using two neurons, no delay on the 

rules, in two steps [6].  With the structure:  

     = ({a},          {(1, 2), (2, 1)}, 1), 

And: 

   = (a, {  / → ; 0,    → ; 0}) 

   = (0, {  / →         /  → ; 0}). [6] 

 
The initial configuration, neuron 1 contains 1 

spike, which, once used to correctly simulate the 

gate, has to be present again in the neuron such 
that the system returns to its initial 

configuration. This is done with the help of 

neuron 2 which in step 2 of the computation 
refills neuron 1 with one spike. 

 

 

 
 

Fig.3. SN P systems simulating NOT gate [6] 
 

If the input in the Boolean gate is 0, hence one 

spike is introduced in neuron 1, it uses the rule 

  / → ; 0, two spikes are sent to the 

environment (and the result of the computation 
is 1), and to neuron 2 in the same time. In the 

second step of the computation neuron 2 uses 

the rule    /  → ; 0 consumes the two spikes 
present inside, and sends one back to neuron 1. 

The system recovers its initial configuration. 
 

Sorting  
 

Employing SN P systems can solve sorting n 

natural numbers, not using the rules in the 
exhaustive way, but as in the original definition 

of such systems. [6] Some n natural numbers 

encoded as spikes, one in each neuron from the 
first layer of the. As long as they are not empty 

they consume at each step a spike, and send n 

spikes, one to each neuron from the second layer 
of the structure, the latter neurons have n 

different thresholds, and have n different number 

of synapses with the neurons from the third layer 

of the structure. The latter ones contain the result 
of the computation.  As in Theorem 2 in [6];  



5 
 

SN P systems can sort a vector of natural 

numbers where each number is given as number 
of spikes introduced in the neural structure. 

 

 

SN P systems OS 
 

Based upon the above, we could introduce a 
very first step, into the direction of a simple 

operating system. The concept is that if we are 

capable of adding, subtracting, comparing, and 
sorting numbers, then we can take this view to a 

higher level of “Jobs”. 

 

Considering that an operating system is some 
environment for processing tasks, or jobs, and 

managing some predefined resources used to 

serving those jobs in execution, if we employ the 
above devices into this direction, mapping a 

“job” to a number, then we can find the 

following: 

 
An SNPOS is a construct of: 

 

SNPOS =  

(E, D {O, σ1, σ2, · · ·, σm, syn, in, out}, J1, J2 · · ·, Jm)  

 
Where:  

 

1. E is the operating system environment- 
can be represented as a P System Skin 

Membrane 

2. D is a set of SN P systems devices, of the 

form:  {O, σ1, σ2, · · ·, σm, syn, in, out},  
3. J1, J2, · · ·, Jm are the jobs contained in 

environment; 

 

A Job is of the form:     = (              ), 
 

     ≥ 0 is the initial number of rules  

(instructions) contained in    , 

       is a finite set of job resources. 

     is the scope of job execution. 

 
Fig.4. SNP Processing Unit 

 

 

Given such a perspective for a SNP processing 

unit, we may have a bird’s eye view on the OS 

environment building blocks as in Figure 5.  
 

 
Fig.5. SNPOS 

 

 

 

 

 

 



6 
 

Future work 
 

For the future work, we will be focusing on the 
detailed design of the SNPOS building blocks, 

also simulating the resolution of a job and its 

results within the processing neurons, how they 

will manage the jobs’ instructions execution, 
storage, and what will the OS environment 

provide as resources and algorithms for 

managing inputs and outputs processes. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

References 

 
[1]          Benedek Nagy, Laszlo Szegedi, Membrane 

Computing and Graphical Operating 

Systems, Journal of Universal Computer 
Science, vol. 12, no. 9 (2006) 

 
[2] E. Lindholm, J. Nickolls, S. Oberman,                

J. Montrym. NVIDIA Tesla: A unified 
graphics and computing architecture. IEEE 

Micro, 28, 2 (2008). 

 
[3] G. Ciobanu, M.J. Perez–Jimenez, G. Paun, 

Applications of membrane computing. 
Natural Computing Series, Springer, 

(2006). 

 
[4] M. Ionescu, Gh. P un, T. Yokomori: Spiking 

neural P systems. Fundamenta 
Informaticae, 71, 2-3 (2006), 279_308. 

 
[5]       Performing Arithmetic Operations with      

Spiking Neural P Systems M.A. Gutierrez 
Naranjo, A. Leporati Seventh 

Brainstorming Week on Membrane 

Computing Sevilla, February 6, 2009 

Volume I. 

 
[6]       Several Applications of Spiking Neural P 

Systems Mihai Ionescu, Dragos Sburlan, 

Proc. WMC8, Thessaloniki, 2007 

 
[7]       W.Gerstner, WKistler: Spiking 

NeuronModels. Single Neurons, 

Populations, Plasticity. Cambridge Univ. 

Press, 2002. 

 

 


