Development and validation of two robust simple chromatographic methods for estimation of tomatoes specific pesticides' residues for safety monitoring prior to food processing line and evaluation of local samples

Amira M. Hegazy, Rehab M. Abdelfatah, Hamada M. Mahmoud, Mohamed A. Elsayed

PII:	S0308-8146(19)31766-2
DOI:	https://doi.org/10.1016/j.foodchem.2019.125640
Reference:	FOCH 125640
To appear in:	Food Chemistry
Received Date:	25 April 2019
Revised Date:	5 July 2019
Accepted Date:	1 October 2019

Please cite this article as: Hegazy, A.M., Abdelfatah, R.M., Mahmoud, H.M., Elsayed, M.A., Development and validation of two robust simple chromatographic methods for estimation of tomatoes specific pesticides' residues for safety monitoring prior to food processing line and evaluation of local samples, *Food Chemistry* (2019), doi: https://doi.org/10.1016/j.foodchem.2019.125640

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2019 Published by Elsevier Ltd.

1	Development and validation of two robust simple
2	chromatographic methods for estimation of tomatoes
3	specific pesticides' residues for safety monitoring
4	prior to food processing line and evaluation of local
5	samples
6	Amira M. Hegazy ^{a*} , Rehab M. Abdelfatah ^a , Hamada M. Mahmoud ^{b,c}
7	and Mohamed A. Elsayed ^d .
8	^a Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy,
9	Beni-Suef University, Beni-Suef, Egypt.
10	^b Environmental Sciences and Industrial Development Department, Faculty
11	of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef
12	University, Beni-Suef, Egypt.
13	° Zoology Department, Faculty of Science, Beni-Suef University, Beni-
14	Suef, Egypt.
15	^d Analytical Chemistry Department, Faculty of Pharmacy, Fayoum
16	University, Fayoum, Egypt.
17	<u>*Corresponding author information:</u>
18	Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy,
19	Beni-Suef University, Beni-Suef, Egypt.
20	<i>Tel:</i> +2/01013518060 <i>Fax:</i> +2/+082/2317950
21	<i>E-mail address</i> : <u>amira.hegazy@pharm.bsu.</u> edu.eg (Amira M. Hegazy)

ABSTRACT

22

Combination of pesticides; acetamiprid, flutolanil and etofenprox are 23 usually used for tomato fruits for protecting them against pest infection. 24 Generally, pesticides, residues could be one of the health hazard sources. 25 Two specific simple sensitive chromatographic methods are developed for 26 27 simultaneous estimation of the concerning pesticides' residues using simple economic steps of field sample preparation. The first method is HP- TLC 28 29 method. Hexane: methanol: acetone: glacial acetic acid (8: 2: 0.5: 0.1, by volume) is proposed as a developing system. The second one is RP- HPLC. 30 Acetonitrile: water (75: 25, v/v) is proposed as a mobile phase. The 31 recommended methods are completely validated regarding ICH guidelines. 32 Their means percentages and standard deviations of accuracy range 33 34 100.32 ± 0.89 - 99.27 ± 0.9 . The methods' repeatability and intermediate precision relative standard deviation percentages range 0.395 & 0.894. 35 They are successfully applied for estimating the pesticides in pure and 36 commercial forms and field samples. 37

- 38 Keywords:
- 39

40

Acetamiprid; flutolanil; etofenprox; HP-TLC; RP- HPLC; validation.

- 42
- 43

1. <u>Introduction</u>

45	Many plants' pests and diseases affect food crops. So farmers use the crop
46	specific pesticides to produce abundant high-quality crops (Knowles,
47	2008), (Garau, Angioni, Aguilera Del Real, Russo, & Cabras, 2002).
48	Tomato fruits have a high anti-oxidant capacity which reduces the risk of
49	cardiovascular and cancer diseases (Raiola, Rigano, Calafiore, Frusciante,
50	Barone, 2014), (Bhuvaneswari & Nagini, 2005) and contain a variety of
51	vitamins and minerals. Fresh tomato fruits could be a potential source of
52	harmful and toxic pesticide residues (Zork & Maja, 2009). At Egypt, Al-
53	Fayoum governorate, location of the study, tomato fruits are sprayed with
54	three pesticides acetamiprid (ACP), flutolanil (FLL) and etofenprox
55	(ETFP), concurrently, to control attack of insects and fungal growth
56	(Approved Recommendations for the Control of Agricultural Pets,
57	Agricultural Pesticide Committee, Egypt, 2015).
58	Acetamiprid (ACP) is N-[(6-chloropyridin-3-yl) methyl]-N'-cyano-N-
59	methylethanimidamide and has PubChem CID 213021, MF:
60	$C_{10}H_{11}CIN_4$ and MW: 222.676g/mol. Flutolanil (FLL) is N-(3-propan-2-
61	yloxyphenyl)-2-(trifluoromethyl) benzamide and has PubChem CID 47898,
62	MF: $C_{17}H_{16}F_3NO_2$ and MW: 323.315g/mol. Etofenprox (ETFP) is 1-
63	ethoxy-4-[2-methyl-1-[(3-phenoxyphenyl) methoxy] propan-2-yl] benzene
64	and has PubChem CID: 71245, MF: $C_{25}H_{28}O_3$ and MW: 376.496g/mol.
65	The chemical structures of the compounds are figured out in Figure S1.
66	They are commonly freely soluble in acetonitrile and methanol (Turner,
67	2017).

68 The literature survey shows some published methods which determine them individually; spectrophotometric methods for determination of ACP 69 70 and FLL residues (Valéria, Sanja, Nataša & Zsigmond, 2012), (Qin, Shi, Gen-di, Hongboand, & Xiao, 2011), (Gallart, Armenta & Guardia, 2016), 71 HPLC methods for determination of ACP and FLL residues residue (Lazić, 72 Šunjka, Grahovac, Guzsvány, Bagi, & Budakov, 2012), (Marti'nez, Gil 73 74 Garcı'a, Martinez, & Lopez, 2002), (Kikuchi, Sakai, Nemoto, & Akiyama, 2018) and HPLC methods for determination of ETFP residue on vegetables 75 76 (Jia, Bi, Wang, Qiu, Zhou, & Zhou, 2006), (Sung, Abd El-Aty, Young, Myeong, Mi, & Han, 2014), (Deuk, Hyeok, & Kwon, 2011). In spite of 77 (Hegazy, Abdelfatah, Mahmoud & Elsayed, 2018) has published an HPLC 78 method for determining a limited number of pesticides, they determine 79 pesticides mixture which is different from the concerning mixture. Also, 80 the method is applied to another plant species. 81

The trend to analyze a narrow range of pesticides belong certain plant product via specific method has been noticed last years (Abdelfatah, Hegazy, Mahmoud & Elsayed, 2018), (Tiwari, & Asthana, 2012), (Baig, Akhtera, Ashfaq and Asi, 2009). A GC-Mass method is found for the estimation of 186 pesticides including the concerned pesticides (Zhao, 2014). The work aims to estimate the residues of tomatoes crop specific pesticides on the fruits before processing and serving stage.

- 89
- 90 2.

2. Materials and methods

- 91 2.1 Instruments
- 92 <u>2.1.1 HP-TLC method</u>

93	CAMAG TLC scanner operated by winCATS software, HP-TLC 20 x 20
94	cm aluminum plates coated with 0.25 mm silica gel 60 $F_{\rm 254}$ (Merck,
95	Germany), rotary flash evaporator (Shanghai Shensheng Biotech limited
96	Co., China), and TV ultra-sonication (Sonix, USA) were used.
97	2.1.2 RP-HPLC method
98	1200 infinity series LC connected to 1260 UV - VIS detector with 1260
99	infinity, and 15 cm x 4.6 mm (i.d 5 μ m particle size) Zobrax SB C ₈ column
100	(Agilent, USA) were used.
101	2.2. Pure samples:
102	ACP (99.21%), FLL (99.08%) and ETFP (99.18%) were purchased from
103	Sigma-Aldrich (Cairo, Egypt).
104	2.3 Commercial formulations:
105	- Jinx®(ACP; 20 % w/w, Batch No. 309872), Moncut® (FLL; 25 % w/w,
106	Batch No. 206214) and Primo® (ETFP; 10 % w/w, Batch No. 2046) were
107	purchased from producing companies; Claire Manufacturing Co. (USA),
108	Nichino Inc. (USA) and Shoura Chemicals (Alexandria, Egypt),
109	respectively.
110	2.4 Chemicals and reagents:
111	Methanol and acetonitrile (HPLC grade) were purchased from Sigma-
112	Aldrich Chemie (GmbH, Germany). Hexane, glacial acetic acid, acetone
113	and sodium sulfate of analytical grade were purchased from El-Nasr
114	Pharmaceutical Chemicals Co. (Cairo, Egypt). De-ionized water was
115	purchased from SEDICO Pharmaceuticals Co. (Giza, Egypt).
116	2.5 Standard solutions

Journal Pre-proofs ACP, FLL and ETFP standard stock solution (1000 µg mL⁻¹) and standard 117 working solutions (100 & 10 µg mL⁻¹) were prepared in methanol. 118 ACP, FLL and ETFP commercial stock solutions (1000 µg mL⁻¹) and 119 working solutions (100 & 10 μ g mL⁻¹) were prepared in methanol. 120 121 2.6 Field sampling: 2.6.1 Sample preparation: 122 Tomato samples were collected from El-azab district, Al-Fayoum 123 Governorate, Egypt during the winter season (average temperature: 20°C). 124 Samples of three kg of previously sprayed ripe tomatoes by the studied 125 pesticides were collected at three replicates each one was one kg so the 126 total weight for all the samples was three kg. The samples were taken 1, 3, 127 7 and 10 days after spraying by pesticides regarding FAO/WHO guidelines 128 (FAO/WHO. 1985). 129 2.6.2 Sample extraction: 130 1 Kg of sprayed tomato fruits was peeled then the peels were chopped and 131 shake with 20 mL of acetonitrile for 2 minutes in a 50 ml centrifuge tube 132 then 5 g of sodium sulfate were added. The tube was centrifuged for 2 133 minutes at 6000 rpm. Supernatant extracts were collected, quantitatively, 134 and concentrated to 3 mL under vacuum using a rotary flash evaporator at 135 28 °C. All the process of preparation was done thoroughly using clean tools 136 137 to prevent cross-contamination. Samples were kept at a fridge to minimize pesticides losses via evaporation or degradation according to a 138 recommendation of the European Commission. 139 2.7 Calibration curves 140 141 2.7.1 HP-TLC method

142	A series of serial dilutions of ACP, FLL, and ETFP in concentrations
143	ranges from 0.10-1.40, 0.01-0.22 & 0.01-0.20 $\mu g~mL^{\text{-1}},$ respectively, were
144	prepared. Samples were applied on HP-TLC plates using 10 μL of each
145	prepared solution using a Camag-Linomat IV applicator.

146 <u>2.7.2 RP-HPLC method</u>

Different series of serial dilutions of ACP, FLL, and ETFP in
concentrations ranges from 1.00-14.00, 0.10-2.20 & 0.10-2.00 μg mL⁻¹,
respectively, were prepared. Triplicate injections were carried out with
injection volume 20 μL.

151

- 152 **3. Results and discussion**
- 153 *3.1-Method development and optimization*
- 154 <u>3.1.1 HP-TLC method</u>

Chloroform/acetone, hexane/acetone, methanol /chloroform and 155 methanol/hexane were tried but give bad separation. The addition of acetic 156 acid to methanol/ hexane reduces tailing and achieves moderate separation 157 (Benger, 1991). Finally, the developing system methanol: hexane: acetone: 158 glacial acetic acid (8: 2: 0.5: 0.1, by volume) gives optimum separation. R_{f} 159 values of the concerning pesticides are 0.30, 0.45 and 0.71 for ACP, FLL 160 and ETFP, respectively, Figure 1. 161

162 <u>3.1.2 RP-HPLC method</u>

163 Multiple chromatographic conditions have manipulated to achieve the best 164 resolution for the three concerning pesticides including organic modifier, 165 scanning wavelength of detection and flow rate. Methanol: water (70: 30 166 and 50: 50, v/v) and methanol: 0.2 % acetic acid solution (80: 20, v/v) give

167	bad separation, then acetonitrile: water (75: 25, v/v) gives moderate
168	separation with broad peaks, finally acetonitrile: water (75: 25,v/v), pH
169	adjusted to 2.87 with glacial acetic acid results in the best resolution with
170	no tailing (Hajimehdipoor, Shekarchi, Hamedani, Abedi, Zahedi, & Gohari,
171	2011). Scanning at 225 nm gives highly sensitive results with the lowest
172	LOD and LOQ values. Many flow rates were tried; 0.60 mL min ⁻¹ gives
173	the best resolution and short time of estimation. The retention time values
174	are 5.68, 7.50 and 9.01min for ACP, FLL and ETFP respectively, as
175	illustrated in Figure 2. By plotting the concentrations versus the relative
176	peak areas, a linear relationship has obtained. Table I shows the regression
177	equation parameters.
178	3.2. Method validation
179	Method validation has carried out for both proposed methods regarding
180	ICH guidelines (International Conference on Harmonization, 2005).
181	3.2.1 Linearity:
182	A linear relationship has obtained for both methods in concentration range
183	0.10-1.20, 0.02-0.25, and 0.02-0.20 μg band $^{-1}$ for each of ACP, FLL, and
184	ETFP by HP-TLC, respectively, and 1.00-14.00, 0.10-2.20, and 0.10-2.00
185	$\mu g\ mL^{-1}$ for each of ACP, FLL, and ETFP by RP-HPLC, respectively,
186	Table I.
187	<u>3.2.2 Accuracy:</u>
187 188	3.2.2 Accuracy: The recovery % of blind pure pesticide samples have calculated and the
187 188 189	3.2.2 Accuracy: The recovery % of blind pure pesticide samples have calculated and the concentration ranges have determined using Beer's law, Table I . The

	Journal Pre-proofs
191	FLL, and ETFP by HP-TLC, respectively, and 99.48, 100.09, and 99.68 for
192	each of ACP, FLL, and ETFP by RP-HPLC, respectively, Table II.
193	3.2.3 Precision:
194	It has tested regarding to both repeatability and intermediate precision.
195	Values verify the precision of the proposed methods showing repeatability
196	0.486, 0.515, and 0.484 for each of ACP, FLL, and ETFP by HP-TLC,
197	respectively, and 0.418, 0.427, and 0.395 for each of ACP, FLL, and ETFP
198	by RP-HPLC, respectively, Table I.
199	<u>3.2.4 Specificity:</u>
200	Figures 1 & 2 show peaks of the studied pesticides verifying the specificity
201	of the proposed HP-TLC and RP-HPLC methods, respectively, without
202	interference from other excipients. R _f values of the concerning pesticides
203	are 0.30, 0.45, and 0.71 for ACP, FLL, and ETFP, respectively. The
204	retention time (t_R) values are 5.68, 7.50, and 9.01min for ACP, FLL, and
205	ETFP respectively. Table II shows the values of R% of each drug
206	determined by each method.
207	3.2.5 Limit of detection (LOD) and Limit of quantitation (LOQ)
208	The limit of detection (LOD) has calculated and found to be 0.030, 0.006,
209	and 0.006 for each of ACP, FLL, and ETFP by HP-TLC, respectively, and
210	0.031, 0.030, and 0.031 for each of ACP, FLL, and ETFP by RP-HPLC,
211	respectively.
212	Limit of quantitation (LOQ) has calculated and found to be 0.090, 0.019,
213	and 0.018 for each of ACP, FLL, and ETFP by HP-TLC, respectively, and
214	0.910, 0.092, and 0.093 for each of ACP, FLL, and ETFP by RP-HPLC,
215	respectively, Table I. LOD & LOO have calculated according to the

	Journal Pre-proofs
216	reference; (Shrivastava and Gupta, 2011; LOD=3.3xSD of the
217	response/slope,
218	LOQ=10xSD of the response/slope.
219	3.2.6 Robustness:
220	Robustness of the methods have verified by deliberate small changes in the
221	chromatographic conditions (USP, 2011), % RSD of each pesticide has
222	calculated for both methods; results are listed in Table SI .
223	<u>3.2.7 System Suitability:</u>
224	Table III shows the system suitability testing parameters of the proposed
225	methods.
226	3.3 Application to commercial formulations
227	The proposed chromatographic methods have used for the determination of
228	ACP, FLL and ETFP in Jinx [®] Powder, Moncut [®] and Primo [®] , respectively,
229	Table II.
230	3.4 Field sample estimation
231	A clean-up, or dilution step may be necessary to reduce matrix
232	interferences and reduce contamination of the instrument system leading to
233	an improved selectivity and robustness (European Commission, 2017). The
234	novel way of sample preparation presented in this work is correlated to
235	peeling just the exposed surface to sprayed pesticides and only peeled
236	surfaces proceed in field sampling. That saves time and cost of sample
237	preparation. Field samples are collected according to WHO/FDA
238	guidelines.
239	At first day of sampling, the field samples estimation shows values little
240	over the acceptable values of the maximum residues limits (MRLs) that

obey the recommended dose for human health and vegetable productivity
regarding FDA authority (Michael, 2015), (Michael, 2010) and (Michael,
2013). But at tenth day, they shows values much less than that of MRLs,
the results are listed in Table SII.

245

3.5 Statistical estimation

The results obtained by the two developed chromatographic methods for the estimation of pure samples of ACP, FLL, and ETFP have statistically compared to those obtained by the reported methods (Lazić, Šunjka, Grahovac, Guzsvány, Bagi, & Budakov, 2012), (Kikuchi, Sakai, Nemoto, & Akiyama, 2018), (Sung, Abd El-Aty, Young, Myeong, Mi, & Han, 2014); where no significant differences have found between them, **Table IV**.

253

254 Conclusion

This work presents two highly specific chromatographic HP-TLC and RP-255 HPLC methods. They could determine the concerning pesticide residues in 256 very low concentrations with perfect accuracy and precision. The novelty 257 of the proposed methods is hidden in determination specifically the 258 259 pesticides which selectively are used effectively on only palatable tomatoes' parts. The proposed methods, superiorly are more specific, more 260 economic and need less sophisticated tools and follow simpler extraction 261 procedures than the published GC-Mass method (Zhao, 2014). Whereas the 262 publisher uses complicated procedures for sample preparation and using the 263 whole plant consuming longer time and requiring more expensive 264 instrumentation. The most advantage of the methods presented in this work 265

266	over the published ones is their cost-effectiveness and simplicity of
267	instrumentation making them suit inspection organizations in developing
268	countries. Thus the proposed chromatographic methods can be used for
269	monitoring ACP, FLL, and ETFP residues on tomato fruits for inspection
270	purposes at Health ministry laboratories. Moreover, they could analyze
271	corresponding commercial formulations without interference from
272	excipients.

273

Acknowledgment

274	The senior author is appreciated and gives all thanks to Prof. Assis. Khaled
275	A. M. Khaled, Faculty of Agriculture, Beni-suef University, for his
276	generous consultation through writing this work. The authors would like to
277	express her sincere thanks to the Faculty of Pharmacy, Fayoum University
278	for its financial support.

279	Reference:
280	Abdelfatah, R.M., Hegazy, A.M., Mahmoud, H.M. & Elsayed, M.A.
281	(2018). Two chromatographic methods for the quantitative determination of
282	some pesticides applied for cucumber pests in Egypt. Separation Science
283	<i>Plus.</i> 1, 5, 334-342.
284	Approved Recommendations for the Control of Agricultural Pets,
285	Agricultural Pesticide Committee, Egypt, 2015, ISBN 978-977-302-448-2.
286	Baig, S.A. & Akhtera, N.A. & Ashfaq, Muhammad & Asi, M.R (2009).
287	Determination of the organophosphorus pesticide in vegetables by high-
288	performance liquid chromatography. American-Eurasian Journal of
289	Agriculture and Environmental Science. 6. 513-519.
290	Benger, B. (1991). Proceeding of the sixth international symposium on
291	instrumental planar chromatography. Institute for Chromatography, Bad
292	Duerkheim, 291.
293	Bhuvaneswari, V. & Nagini, S. (2005). Lycopene: a review of its potential
294	as an anticancer agent, Curr Med Chem Anticancer Agents., 5, 627-35.
295	Deuk, Y., Hyeok, C. & Kwon, K. (2011). Liquid chromatographic
296	determination of etofenprox residues in foods with mass-spectrometric
297	confirmation, Korean Journal of Environmental Agriculture, 30, 432-439.
298	European Commission, 2017. SANTE / 11813/2017 Guidance document on
299	analytical quality control and method validation procedures for pesticide
300	residues and analysis in food and feed.
301	FAO/WHO. (1985). 2 nd edition, Recommended methods of sampling for
302	determination of pesticide residues. US FDA Federal Register, 5-25.

303	Gallart, D., Armenta, S. & Guardia, M. (2016). Indoor and outdoor
304	determination of pesticides in air by ion mobility spectrometry. Talanta,
305	161, 632-639.
306	Garau, V.L., Angioni, A., Aguilera Del Real, A., Russo, M. & Cabras, P.
307	(2002). Disappearance of azoxystrobin, pyrimethanil, cyprodinil, and
308	fludioxonil on tomatoes in a greenhouse. Journal of Agricultural and Food
309	Chemistry, 50, 1929-1932.
310	Hajimehdipoor, H. Shekarchi, M., Hamedani, M.P., Abedi, Z., Zahedi, H.
311	& Gohari, A.R. (2011). A validated high performance liquid
312	chromatography method for the estimation of thymol and carvacrol
313	in Thymus vulgaris L. volatile oil. Iranian Journal of Pharmaceutical
314	Research, 10, 705-710.
315	Hegazy, A.M., Abdelfatah, R.M., Mahmoud, H.M. & Elsayed, M.A.
316	(2018). Two spectrophotometric methods for quantitative determination of
317	some pesticides applied for cucumber in Egypt. Beni-Suef University
318	Journal of Basic and Applied Sciences.7, 4, 12, 598-605.
319	International Conference on Harmonization (ICH). (2005). Q2R1:
320	Validation of analytical procedures: methodology. US FDA Federal
321	Register, 65-74.
322	Jia, G., Bi, C., Wang, Q., Qiu, J., Zhou, W. & Zhou, Z. (2006).
323	Determination of etofenprox in environmental samples by HPLC after
324	anionic surfactant micelle-mediated extraction. Analytical and
325	Bioanalytical Chemistry, 384, 1423-1427.
326	Kikuchi, H., Sakai, T., Nemoto, S. & Akiyama, H. (2018). Total
327	determination of residual flutolanil and its metabolites in livestock products

328	and seafood using liquid chromatography-tandem mass spectrometry. Food
329	additives and contaminants. Part A, Chemistry, estimation, control,
330	exposure and risk assessment, 21, 1-9.
331	Knowles, A. (2008). Recent developments of safer formulations of
332	agrochemicals. Environmentalist, 28, 35-44.
333	Lazić, S., Šunjka, D., Grahovac, N., Guzsvány, V., Bagi, F. & Budakov, D.
334	(2012). Application of liquid chromatography with diode-array detector for
335	determination of acetamiprid and 6-chloronicotinic acid residues in sweet
336	cherry samples. Journal Pesticides and Phytomedicine, 27, 321-329.
337	Martı'nez, J.L., Gil Garcı'a, M.D., Martinez, M. & Lopez, T. (2002).
338	Determination of acetamiprid by hplc-fluorescence with post-column
339	photoderivatization and HPLC-mass selective detection. Journal of Liquid
340	Chromatography & Related Technologies, 25, 2695-2707.
341	Michael, G. (2010). Flutolanil pesticide tolerance. Federal Register, 75,
342	80346-80350.
343	Michael, G. (2013). Etofenprox pesticide tolerance. Federal Register, 78,
344	70870-70877.
345	Michael, G. (2015). Acetamiprid pesticide tolerance. Federal Register, 80,
346	68772-68778.
347	Qin, X., Shi, D., Gen-di, J., Hongboand, L. & Xiao, Y. (2011).
348	Determination of acetamiprid by a colorimetric method based on the
349	aggregation of gold nanoparticles. Microchimica Acta, 173, 323-329.
350	Raiola, A., Rigano, M. M., Calafiore, R., Frusciante, L., Barone, A. (2014).
351	Enhancing the health-promoting effects of tomato fruit for biofortified
352	food. Mediators Inflamm. 2014, 139873.

	Journal Pre-proofs
353	Shrivastava, A. & Gupta, V. B. (2011). Methods for the determination of
354	limit of detection and limit of quantitation of the analytical methods. Chron
355	Young Sci. 2:21-5.
356	Sung, K., Abd El-Aty, A. M., Young, J., Myeong, S., Mi, Y. & Han, J.
357	(2014). A simple HPLC-UVD method for detection of etofenprox in green
358	tea using sample hydration. Food Science and Biotechnology, 23, 2097-
359	2101.
360	The United States pharmacopeia. (2011). 34th edn. USA: National
361	Formulary 29, United States pharmacoprial convention INC.
262	
362	liwari, N. & Asthana, A. A. (2012). Catalytic Kinetic Spectrophotometric
363	Determination of Organophosphorus Pesticides in Vegetable Samples.
364	Journal of Brazilian Chemical Socity, 23, 2, 322-327.
365	Turner, J. A. (2017). The pesticides manual, 17th edition, British Crop
366	Production Council, 16-34.
367	Valéria, J., Sanja, L., Nataša, D, V. & Zsigmond, J. (2012). Derivative
368	spectrophotometric determination of acetamiprid in the presence of 6-
369	chloronicotinic acid. Journal of Serbian Chemical Society, 77, 911-917.
370	Zhao, P., Huang, B., Li, Y., Han, Y., Zou, N., Gu, K., Li, X. & Pan, C.
371	(2014). Rapid multiplug filtration cleanup with multiple-walled carbon
372	nanotubes and gas chromatography-triple-quadruple mass spectrometry
373	detection for 186 pesticide residues in tomato and tomato products. Journal
374	of Agricultural and Food Chemistry, 62, 3710-3725.
375	Zorka, K. & Maja S. (2009). Screening of fresh fruit and vegetables for
376	pesticide residues on Croatian market. Food Control, 20, 4, 419-422.
377	

Figure 1: 3D HPTLC-densitogram of a resolved mixture of Acetamiprid (R_F =0.30), Flutolanil (R_F =0.45) and Etofenprox (R_F =0.71) using hexane: methanol: acetone: glacial acetic acid (8: 2: 0.5: 0.1, v/v) as a developing system at 220 nm.

Figure 2: HPLC chromatogram of a resolved mixture of Acetamiprid, Flutolanil and Etofenprox using acetonitrile: water (75: 25, v/v), pH adjusted to 2.87 with glacial acetic acid.

398

Table I: Results of assay validation parameters of the proposed methods; HP-TLC andRP-HPLC.

Parameter	H	IP-TLC metho	RP-HPLC method			
	ACP	FLL	ETFP	ACP	FLL	ETFP
Range	0.10- 1.2	0.02- 0.25	0.02- 0.20	1.0- 14	0.10-2.5	0.10-2.0
	μg per band	µg per band	μg per band	μg mL ⁻¹	µg mL-1	μg mL ⁻¹
Slope	0.7956	4.4817	2.4624	0.5009	3.9941	6.9782
Intercept	0.0032	0.0023	0.0068	0.0548	0.0437	0.0341
Correlation coefficient	0.9999	0.9999	0.9999	0.9999	0.9998	0.9999
Accuracy	100.18	99.32	99.27	100.32	99.28	99.76
$(Mean \pm SD)$	±0.93	±0.84	±0.91	±0.89	±0.91	±0.99
Precision		. (
Repeatability	0.486	0.515	0.484	0.418	0.427	0.395
(RSD %)						
Intermediate precision	0.802	0.894	0.704	0.813	0.795	0.687
(RSD %)						
LOD	0.030	0.006	0.006	0.031	0.030	0.031
LOQ	0.090	0.019	0.018	0.910	0.092	0.093

402

403

* The intraday precision (n =3), average of three different concentrations (0.2, 0.6 and 0.8 μ g band⁻¹) of ACP and (0.04, 0.08 and 0.1 μ g band⁻¹) of each of FLL and ETFP for HPTLC method, and (2, 4 and 8 μ g mL⁻¹) of ACP and (0.2, 0.6 and 1 μ g mL⁻¹) of FLL and ETFP for RP-HPLC method repeated three times within day. The inter-day precision (n =3) repeated three times in three successive days.

**Limit of detection and limit of quantitation are determined via calculations
(LOD=3.3xSD of the response/slope, LOQ=10xSD of the response/slope),
(Shrivastava & Gupta, 2011).

HP-TLC method							RP-HPLC m	ethod	
Taken	Found*	Pure added	Pure Found	Recovery %	Taken	Found* %	Pure added	Pure Found	Recovery %
	70	$(\mu g/band)$	(μ g/band)		(µg mL ⁻¹)		(µg mL ⁻¹)	(μ g/band)	
ACP	ACP	АСР	ACP	ACP	ACP	ACP	ACP	ACP	ACP
0.60	99.24	0.40	0.40	99.64	5.00	99.48	3.00	3.03	101.16
		0.60	0.61	100.85			5.00	5.00	99.98 100.08
		0.80	0.79	99.07			7.00	7.01	100.08
		Mean± SD		99.85±0.91		Mea	un± SD)	100.41±0.66
FLL	FLL	FLL	FLL	FLL	FLL	FLL	FLL	FLL	FLL
0.10	99.18	0.06	0.06	100.41	0.50	100.09	0.30	0.30	99.96
		0.10	0.10	98.60			0.50	0.50	100.50
		0.15	0.15	100.32			1.00	1.00	99.52
		Mean± SD		99.78±1.02		Mea	nn± SD		99.99±0.49
ETFP	ETFP	ETFP	ETFP	ETFP	ETFP	ETFP	ETFP	ETFP	ETFP
0.10	99.72	0.08	0.08	99.69	0.50	99.68	0.30	0.30	100.85
		0.10	0.10	101.28			0.50	0.50	99.31
		0.15	0.15	99.73			1.00	1.01	101.17
		Mean± SD		100.23±0.91		Mea	un± SD		100.44±0.99

412 Table II: Results of application of the proposed methods to Jinx[®] Powder, Moncut[®]

413 and Primo[®] and results of application of the standard addition technique.

414

415

416

417 *Average of three determinations.

Parameter	HP-TLC method			RP-I	Reference		
	ACP	FLL	ETFP	ACP	FLL	ETFP	value
Tailing factor* (T)	0.89	0.93	1.07	0.92	0.88	0.99	< 1.5
Capacity factor (K')	3.10	4.62	7.21	4.51	6.52	8.01	1-10
Resolution (R _S)	1.69		2.53	2.92		2.50	> 1.5
Selectivity (a)	1.53		1.52	1.44		1.23	>1
Column efficiency (N)	-	-	-	1111	1600	4096	Increase with efficiency of the separation
HETP**	-	-	-	0.013	0.009	0.004	The smaller the value the higher the column
(cm plate ⁻¹)							encercy
419 *Calculated using	g three peak	as.		6			
420 **HETP = heigh	nt equivalen	t to theor	retical plate,	(cm plate	⁻¹).		
421							
422							
423							
424							
425							
426							
427							
428	128						
429							
430							

418 Table III: System suitability testing parameters of the proposed methods.

431 Table IV: Statistical comparison of the results obtained by the proposed methods and

the reported methods, (Lazić, Šunjka, Grahovac, Guzsvány, Bagi, & Budakov, 2012),

433 (Kikuchi, Sakai, Nemoto, & Akiyama, 2018) and (Sung, Abd El-Aty, Young,

- 434 Myeong, Mi, & Han, 2014) for determination of the concerning pure pesticides.
- 435

Parameter	HPTLC method			HP	HPLC method			Reported methods *		
:	ACP	FLL	ETFP	ACP	FLL	ETFP	АСР	FLL	ETFP	
Mean	99.64	99.79	99.86	99.99	99.98	99.77	99.50	99.67	100.03	
SD	0.90	0.99	0.97	0.98	0.97	0.91	1.19	1.16	1.25	
Variance	0.81	0.98	0.94	0.96	0.94	0.83	1.42	1.35	1.56	
Ν	7	7	7	7	7	7	7	7	7	
Student's <i>t</i> - test* (2.45)	0.26	0.22	0.29	0.85	0.57	0.44				
F- test** (4.28)	1.75	1.38	1.66	1.48	1.44	1.88				

* ACP was analyzed by using acetonitrile: 0.10 N ammonium chloride (80: 20, v/v)
and gradient elution at 230 nm.

438 * FLL was analyzed by LC/MS/MS.

* ETFP was analyzed by using acetonitrile: water (85: 15, v/v) and 1 mL flow rate at
225 nm.

441 ** Figures in parenthesis are the corresponding tabulated values at p = 0.05.

442

443

	Journal Pre-proofs
446	Declaration of interests
447	
448 449	Interaction of the sector o
450	
451 452 453	□The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:
454	
455	
456	
457	
458	

		Journal Pre-proofs
460		Highlights
461		
462	•	The developed chromatographic methods are highly sensitive
463		and specific and have more economic methodology.
464	•	The proposed field sample extraction procedures follows novel
465		simple economic steps.
466	•	The methods performance are good consistency with the
467		corresponding GC method and superiorly simpler than it.

The methods can be used for monitoring the pesticides
residues.