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Abstract

The current article aims at investigating the effect of a

periodic tangential magnetic field on the stability of a

horizontal flat sheet. The media were considered porous,

the three viscous‐fluid layers were initially streaming

with uniform velocities, and the magnetic field admitted

the presence of free‐surface currents. Furthermore, the

transfer of mass and heat phenomenon was taken into

account. The analysis, in this paper, was followed by the

viscous potential theory. Moreover, the stability of the

boundary‐value problem resulted in coupled second‐
order linear differential equations with damping and

complex coefficients. In regard to the uniform and

periodic magnetic field, the standard normal mode

approach was applied to deduce a general dispersion

relation and judge the stability criteria. In addition,

several unfamiliar cases were reported, according to

appropriate data choices. The stability conditions were

theoretically analyzed, and the influences of the various

parameters in the stability profile were identified

through a set of diagrams. In accordance wth the

oscillating field, the coupled dispersion equations were

combined to give the established Mathieu equation.

Therefore, the governed transition curves were, theore-

tically, obtained. Finally, the results were numerically

confirmed.

http://orcid.org/0000-0002-5596-024X
mailto:Aya.Sayed@science.bsu.edu.eg
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fhtj.21583&domain=pdf&date_stamp=2019-09-23


KEYWORD S

magnetic field, mass and heat transfer, porous media, stability

analysis, viscous potential flow

1 | INTRODUCTION

Rayleigh‐Taylor instability (RTI) occurs when, with reference to density, a dense fluid is pushed
by a lighter one. Due to the wide range of applications of RTI in planetary and stellar
atmospheres, as well as other fields, it has been addressed in several studies. This phenomenon
was first investigated by Rayleigh,1 and then later by Taylor2 who showed that, when two
superposed fluids of different densities are accelerated in a direction perpendicular to their
interface, the surface becomes stable or unstable according to whether the acceleration is
directed from the heaviest to lighter fluid or vice versa. There are two streams of research that
investigated this phenomenon: physics and engineering. A significant review of the
hydrodynamic stability for RTI and Kelvin‐Helmholtz instability (KHI) has been reported
throughout Chandrasekhar’s3 pioneering book. El‐Shehawey et al.4 studied the electrohydro-
dynamic stability of a fluid layer that imbedded between two different fluids. Their inviscid
fluid system was influenced, only, by the gravitational forces together with the tangential
electric field. They showed that the tangential electric field plays a stabilizing role, it may be
used to suppress the instability of the system at a certain wave number. The stability analysis
resulted in two simultaneous linear second‐order differential equations. The current study
involved many parameters, unlike previous studies. Mohamed et al.5 introduced the same
problem that was given by El‐Shehawey et al.4 but in case of a periodic electric field. In this
case, they obtained two simultaneous ordinary differential equations of the Mathieu type. They
used the multiple time scale technique to judge the stability criteria. They showed that the
tangential periodic field cannot stabilize a system that is unstable under a uniform electric field.
Actually, the current paper includes the behavior of the fields that was given by El‐Shehawey
et al.4 and Mohamed et al.5 Mohamed et al.6 studied the elecrohydrodynamic of two interfaces
separating three fluid phases. They considered two cases: the case of the absence of the surface
charges together with that in their presence. They showed that the field still has a destabilizing
influence, but this influence is partially shielded in some situations. Similar influence has been
considered in the current paper as the tangential admitted the presence of free‐surface currents
at the interface. El‐Dib and Matoog7 investigated the problem by electroviscoelastic Kelvin‐
Helmholtz waves of three‐phase Maxwellian fluids under the influence of a periodic orthogonal
electric field in the absence of surface charges. They used the symmetric and antisymmetric
modes in their analysis. Moreover, they indicated that the thickness of the horizontal layer as
well as the frequency of the layer played a destabilizing role in the stability picture. Similar
analysis as that given by El‐Dib and Matoog7 has been utilized in the current paper. Recently,
Moatimid et al.8 investigated the influence of an axial periodic field on streaming flows
throughout three coaxial infinite cylinders. The latter study is more relevance to the current
study in considering the viscous potential theory as well as the porous media.

In the literature, magnetic fluids are referred to as ferromagnetic fluids or simply, ferrofluids. The
study of magnetic fluids is critical due to its application in the industry, for instance, design of sprays
and inkjet printers. Many researchers have studied the magnetohydrodynamic stability problems
such as, linear stability of a ferrofluid on a rigid horizontal plane under a tangential magnetic field,
as was investigated by Zelazo and Melcher.9 In addition, the effect of capillary‐gravity waves at the

2 | MOATIMID ET AL.



surface of separation between two unbounded magnetic fluids in permeable media was studied by El‐
Dib.10 In addition, Elhefnawy et al.11 examined the nonlinear stability of two‐phase magnetic fluids in
permeable media under the action of a constant normal magnetic field. Furthermore, Alkharashi12

deliberated a linear stability of three viscous‐fluid layers in permeable media under the application of
a normal magnetic field, which is normal to the surface of separation. Recently, Horstmann et al.13

introduced a novel on‐the‐interface wave experiment to measure the wave amplitudes in cylindrical
containers. Meanwhile, Wang14 considered the dynamics of double incompressible electrically
conducting fluid layers in the presence of a magnetic field. He showed that the viscous and
nonresistive problem around the equilibrium, in the nonlinear point of view, is stable under a certain
criterion.

In multiphase flows, the phenomenon of heat and mass transfer has received wider importance
due to its extensive use in several fields, such as heat transfer in engineering and in geophysical
applications.15 The assumption that the fluids are immiscible is the main aspect in many studies on
interface instability. Accordingly, there is no mass transfer throughout the interface. When the
thermal effects are minor, it is advisable to treat the fluids as immiscible; otherwise, when there is a
strong temperature gradient in the fluid, thermal influences on the interface waves must be
included.16 Consequently, mass transfer throughout the interface is of great significance. The
behavior of heat and mass transfer through an interface is highly essential in a large number of
industrial and environmental processes, which may comprise the design of many kinds of
contacting equipment, for instance, evaporators, chemical reactors, boilers, gas absorbers,
condensers, pipelines, nuclear reactors, and many others. Hsieh17,18 is considered as the first
who made a simplified formulation of the model of the interface instability in the presence of mass
and heat transfer. His modeling mainly focused on the issues concerning RTI and KHI. To the best
of the researchers’ knowledge, Moatimid19 extended the previous works of Hsieh17,18 to modulate
the problem of double interfaces in case of KHI. Throughout his linear analysis, he obtained
coupled second‐order differential equations, which had complex and periodic coefficients. To
minimize the mathematical manipulations, he considered the symmetric and antisymmetric
disturbances. Furthermore, Moatimid et al.20 investigated the influences of suction and injection at
the boundaries of two‐phase fluids. Moreover, they studied the influence of the normal streaming
velocity on the interface instability. Their study was conducted using a nonlinear stability approach.
Furthermore, Awasthi21 examined the effect of an axial electric field on the stability analysis in the
presence of gravity, heat, and mass transfer. He noticed that the axial electric field suppresses
the amplitudes of disturbance waves. Recently, El‐Sayed et al.22 investigated the stability analysis of
the interface between two dielectric layers with interface mass and heat transfer in case of RTI.
Their linear stability analysis revealed that this transfer had no implication in the stability criteria.
In contrast, the nonlinear stability technique showed that it has a dual role in the stability picture.
However, in the present paper, the linear approach showed an influence of the transfer of mass and
heat transfer on the stability configuration.

Bau23 investigated the stability analysis of a flat interface between two fluid layers saturated
in porous media, where he derived the marginal stability criteria for the Darcian and
nonDarcian fluids. Furthermore, in both cases, the instability occurs provided that the velocities
should exceed some critical value. Zakaria et al.24 studied the stability diagram of streaming
magnetic fluids throughout porous media. Their model consisted of three incompressible
magnetic fluid layers. They showed that the thickness of the middle layer plays a destabilizing
role. In addition, dual roles were found due to the initial streaming and the porosity in the
stability picture. Alkharashi and Gamiel25 investigated the interface stability of three fluid
layers, which were fully saturated in porous media. Their linearized linear stability approach
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leads to two coupled Mathieu equations, where they found that the porosity had a dual
influence on the stability picture. Recently, Moatimid et al.8 investigated the influence of an
axial periodic field on streaming flows throughout three coaxial infinite cylinders. The three
fluids were saturated in fully saturated porous media; however, they did not consider the
symmetric and antisymmetric modes in their analysis. Furthermore, the numerical calculations
indicate that the coefficients of mass and heat transfers as well as the streaming play a
destabilizing role, in contrast to the having a stabilizing influence. Recently, Moatimid et al.26

introduced a few representatives of porous media in the problem of a streaming cylindrical
sheet. Their analysis resulted in a damped differential equation with complex coefficients.
These equations were combined to obtain a single dispersion equation. They showed that
Darcy’s coefficients as well as the dielectric constants played a stabilizing role in the stability
picture.

Viscous potential flow received a considerable interest in numerous problems in hydrodynamic
stability problems. Throughout this theory, the viscosity is ignored in the Navier‐Stokes equation;
simultaneously, appears only at the boundary between the two‐phase fluids. It is worth noting that
the theory was primarily introduced by Stokes.27 A distinguished review on this topic was
demonstrated, later, by Joseph,28 who showed that for the potential flow v φ= −∇ , in case of an
incompressible fluid, the solution of the Navier‐Stokes equation at which the vorticity is identically
zero; therefore, the term μ v2∇ vanishes from the bulk of the fluid. Meanwhile, the viscosity
occurred only at the interface. Sirwah29 studied the interface instability between two fluids, utilizing
the viscous potential theory in his approach. Furthermore, he gave numerous examples to indicate
the effects of the various parameters on the stability configuration. Awasthi et al,30 also studied the
viscous corrections of the potential flow analysis of KHI of two viscous fluids in the presence of a
tangential magnetic field. They demonstrated that the irrotational shearing stresses have a
stabilizing effect in the presence of heat and mass transfer throughout the interface. In addition,
AlHamdan and Alkharashi31 discussed the problem of the stability characterization of three
permeable layer models under a magnetic field. In this study, they ignored the stability analysis of a
uniform streaming. However, unfortunately, their stability analysis for the periodic field needs more
adjustment; for instance, their dispersion relationship gives a quartic equation in the frequency of
the surface waves. It is of a complex nature; therefore, it has four complex roots, and they are not
necessarily of complex conjugates. As a result, the zero‐order solution is, exactly, unstable;
consequently, there is a great doubt in their stability analysis. In contrast, the current paper gives, in
more depth, the stability analysis of a uniform streaming, uniform and periodic magnetic field. A set
of diagrams is given to illustrate the influence of the several parameters in the instability picture.
Recently, Moatimid et al.26 studied the influence of a uniform axial electric field on a cylindrical
streaming sheet. To avoid the mathematical manipulation; their analysis was based on the viscous
potential theory. Several special cases are reported upon appropriate data selections.

As a consequence of the superposed magnetic fluids, Parekh and Upadhyay32 characterized
two different magnetic fluids synthesized earlier with transformer oil as a carrier liquid. They
compared the magnetic properties with those of pure transformer oil. Yayla et al.33 gave a
numerical performance to understand a two‐phase flow phenomenon in coalescing or
corrugating plate separators. Their study focused on the separation of water from an oil‐water
mixture. Chakrabarti and Das34 studied, in detail, the three‐layer flow pattern that occurs
during the concurrent flow of two immiscible fluids. Therefore, the present study investigated
the influence of a tangential periodic magnetic field on a fluid sheet embedded between two
finite layers. Simultaneously, the magnetic field admits the presence of surface currents at
the interfaces. In addition, the porous media, transfer of mass and heat, gravitational forces,
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and surface tension were taken into consideration. To make a mathematical simplification,
the viscous potential flow theory was utilized. The problem is significantly crucial from
the geophysical perspective. This study was an extension of previous one19 to include all of
these aspects. A general dispersion relation was obtained by using the standard normal mode
analysis. The stability of the system was analytically and numerically investigated. The results
illustrate the interest of the fluid dynamic aspects of aquifer depletion, in petroleum stores,
spray coating procedure, and metal powder manufacturing. The plan of the current work is as
follows: Section 2 is devoted to introducing the mathematical formulation of the problem and
the corresponding governing equations. Section 3 presents a formulation of general dispersion
equations. In addition, the mathematical manipulation of these equations, from the point of
view of the symmetric and antisymmetric disturbances was also presented. The stability
analysis of the uniform magnetic field is depicted in Section 4. The case of the periodic field was
introduced in Section 5. Finally, the concluding remarks were aew in Section 6.

2 | FORMULATION OF THE PROBLEM

The present model was confined to two horizontal, flat, rigid boundaries with the distance b2 apart.
A magnetic infinite long horizontal liquid sheet was of finite thickness a2 and embedded between
two other finite layers of thickness b a−∣ ∣. Both the viscous incompressible fluids were obtained
durig uniform streaming. Furthermore, tangential periodic tangential magnetic fields were acted
upon in the three layers. In addition, free‐surface currents were assumed to be present at the
interfaces between the three fluid layers. Consequently, the tangential magnetic field intensities
must be of different strengths. Only two dimensional disturbances were considered to avoid any
generality loss. For more convenience, the Cartesian coordinates x y( , ) were considered; such
configurations are of relevance with astrophysics and extraction of petroleum.

Figure 1 gives a full illustration of the considered system, where the horizontal x‐axis is
located at the center of the middle sheet. Moreover, the vertical y‐axis was directed upward.
The gravitational forces (g) were taken into consideration, which operate along the negative
y‐direction. Two undisturbed surfaces of separation between the two liquids were considered,
which were taken as the initial flat to form the planes y a= − and y a= . Within each region,
all liquids were assumed to be homogeneous and saturated in porous media; therefore, the
structure of the liquids was defined accoring to the following parameters; density ρ, dynamic
viscosity η, the magnetic permeability μ, Darcy’s coefficient ν, porosity m, periodic tangential

FIGURE 1 The physical model
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magnetic field H ωtcos , and the streaming V . Generally, the subscripts j = 1, 2, and 3 refer to
quantities in the upper, middle, and lower fluids, respectively. The mass was allowed to be
transferred across the interfaces only; consequently, the immiscibility conditions no longer
hold. The temperatures at the boundaries: y b y a y a= , = , = − , and y b= − were denoted by
T T T, ,1 2 3, and T4, respectively. Realistically, since the transfer of mass across the interface
represents a transformation of the fluid from one phase to another, there is invariably a latent
heat associated with the phase change. It is essential throughout this interface coupling
between the mass transfer and the release of latent heat that the motion of fluids is influenced
by the thermal effects. Consequently, when there is significant mass transfer across the
interface, the transfer of heat in the fluid has to be taken into consideration.

Finally, the following configuration represents a simplified formulation of the problem of
stability of mass and heat transfer, which was based on a careful investigation of the previous
comprehensive analysis that were given by Hsieh.17,18

After a limited, but a finite departure from the initial configuration, the surface deflections
are expressed by considering the standard normal mode analysis,3 the surface deflections
ξ x t( ; )l may be represented as a sinusoidal wave of finite amplitude where, after disturbance,
the interface is as follows:

y x t a ξ x t( ; ) = (−) + ( ; )l
l

+1 (1)

and

ξ x t γ t c c l( ; ) = ( ) e + . ., = 1, 2,l l
ikx (2)

where γ t( )l is an arbitrary time‐dependent function. It gives the performance of the amplitude
of the disturbance at the separation surfaces, k is the wave number which is supposedly genuine
and positive, while c c. . represents the complex conjugate of the preceding term.

It is convenient to determine the outward unit normal vectors to the interfaces, which may
be obtained from the relation: n S Sˆ = /| |l l l∇ ∇ , where S x y t( , ; )l represents the surface geometry
of the interfaces, which is defined as S y a ξ x t= − (−) − ( ; ).l

l
l

−1

Therefore, one gets

n
ξ

x
e e= − + ,l

l
x y

⌢ ∂

∂
(3)

where ex and e y are the unit vectors along the x‐ and y‐directions, respectively.
Typically, as shown by Joseph28 and others, who showed that for the potential flow v φ= −∇

is, in case of an incompressible fluid, the Navier‐Stokes equation behaves like the Euler’s one;
therefore, the term μ v2∇ vanishes from the bulk of the fluid. Subsequently, the equation that
governs the behavior of the viscous incompressible fluid, in case of the potential flow,
throughout the permeable media, according to Brinkman‐Darcy equation is given by

ρ

m

v

m
v v P

υ

m
v ρ g e

t
+

1
( . ) = − − − ,

j

j

j

j
j j j

j

j
j j y

⎛
⎝⎜

⎞
⎠⎟

∂

∂
∇ ∇ (4)

where Pj represents the pressure in each medium.
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The frictional forces are the result of the interaction force between the fluid and the
permeable medium. It is proportional to the flow velocity which is represented by the term
υ v m/j j j, where υ η q= /j j j is the Darcy’s coefficient, ηj is the fluid viscosity, and qj is the
permeability of the porous medium.

In accordance with the simplification of the viscous potential theory, as stated above in the
fifth paragraph of the introduction, the viscosity occurs only at the interfaces. Otherwise, in the
bulk of the three fluids, the flows are regarded as ideal ones. Therefore, the fluids may be
considered as irrotational liquids and then they their potentials obey the Laplace equation.
Consequently, the standard fluid velocity rises and permitted to produce a scalar potential
φ x y t( , ; ), such that

v V e φ j= + , = 1, 2, 3.j j x j∇ (5)

Since the three fluid layers were assumed to be incompressible, the scalar potential φ x y t( , ; )

becomes a harmonic function, that is,

φ = 0.j
2∇ (6)

Typically, as in many studies on the interfacial instabilities, some of the reductions of the
Maxwell’s equations were satisfied to describe of hydromagnetic phenomena of the fluid
system. Therefore, the quasistatic approximation35 was usually considered. Since all fluids were
subjected to horizontal magnetic fields H H,0

(1)
0
(2), and H0

(3), in which H H H0
(1)

0
(2)

0
(3)≠ ≠ .

Therefore, Maxwell equations were reduced to

μ H. ( ) = 0j j∇ (7)

and

H J= ,j f∇ ∧ (8)

where J f is the surface current density.
Hence, the magnetic field may be written as

H H ω t e ψ= cos − ,j
j

x j0
( ) ∇ (9)

where ψ x y t( , ; )j is a scalar function that represents the magnetic potential. It is quite clear that
the stream function ψ x y t( , ; )j guarantees that Equation (7) was satisfied, while the left bulk
equation H( × = 0)j∇ , indicates that the function ψj satisfies Laplace’s equation

ψ = 0.j
2∇ (10)

In accordance with the standard modes analysis,3 the magnetic potential and the velocity
potential may be written in the form
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ψ x y t ψ y t c c( , ; ) = ( ; )e + . .j j
ikx⌢

(11)

and

φ x y t φ y t c c( , ; ) = ˆ ( ; ) e + . .j j
ikx (12)

Hence, the solutions of the linearized equations (6) and (10) are given by

φ x y t A t ky B t ky c c( , ; ) = [ ( ) cosh + ( )sinh ]e + . .j j j
ikx (13)

and

ψ x y t C t ky D t ky c c( , ; ) = [ ( ) cosh + ( ) sinh ]e + . .j j j
ikx (14)

As a result of perturbation, the zero order of the pressure may be written as

P υ V x m ρ g y λ t= − / − + ( ),j j j j j j0 (15)

where λ t( )j is an arbitrary time‐dependent function.
As shown later, the continuity of the normal stresses in the zero order at the interface yields

λ t λ t ρ ρ ga υ V m υ V m x

μ H μ H ωt

( ) − ( ) = (−) ( − ) + ( / − / )

−
1

2
− cos .

l l
l

l l l l l l l l

l l l l

+1
+1

+1 +1 +1 +1

2
+1 +1

2 2⎜ ⎟
⎛
⎝

⎞
⎠ (16)

The pressure in the first order may be evaluated from the Bernoulli’s equation. In other
words, the integration of the equation of motion Equation (4) yields

P x y t
k m

ρ
d

dt
i
kV

m
ν A t ky B t ky c c( , ; ) = −

1
+ + [ ( )sinh + ( ) cosh ]e + . .,j

j
j

j

j
j j j

ikx
⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥ (17)

where A t B t C t( ), ( ), ( )j j j , and D t( )j are arbitrary functions of time, which are indicated by the
employment of the suitable boundary conditions

2.1 | Boundary conditions

To complete the boundary‐value problem, the general potentials φj and ψj as given in Equations
(13) and (14) must be specified. Therefore, it is crucial to determine the arbitrary time‐
dependent functions that appear in these equations. For the purpose of specifying these
unknown functions, it is convenient to identify two types of boundaries: the first is that at the
surface between a fluid and a rigid surface, and the second is in the fluid/fluid interfaces.
Subsequently, the boundary conditions may be formulated as follows:

For the hydrodynamic path:
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The related boundary conditions are illustrated, in detail, as given by Moatimid.19 In
accordance with these conditions, the following solutions could be inferred/suggested:

v x y t
k b y

k b a
m γ t

α m

ρ
ikV γ t c c( , ; ) =

sinh [ ( )]

sinh [ ( )]
( ) + + ( ) e + . .,′ ikx

1 1 1
12 1

1

1 1

⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟ (18)

v x y t
ak

k a y m γ t
α m

ρ
ikV γ t

k a y m γ t
α m

ρ
ikV γ t c c

( , ; ) =
1

sinh(2 )
sinh [ ( + )] ( ) + + ( )

+ sinh [ ( − )] ( ) + + ( ) e + . .,

′

′ ikx

2 2 1
12 2

2

2 1

2 2
23 2

2

2 2

⎡
⎣
⎢⎢

⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟

⎤
⎦
⎥⎥ (19)

v x y t
k b y

k b a
m γ t

α m

ρ
ikV γ t c c( , ; ) =

sinh [ ( + )]

sinh [ ( − )]
( ) + + ( ) e + . .,′ ikx

3 3 2
23 3

3

3 2

⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟ (20)

P
k b y

k m ρ k b a
α m ikV ρ υ m ikV ρ γ t

m ρ α υ m ikV ρ γ t m ρ γ t

=
cosh [ ( − )]

sinh [ ( − )]
[( + )( + ) ( )

+ (( + ) + 2 ) ( ) + ( )]e ,′ ″ ikx

1
(1)

1
2

1

12 1 1 1 1 1 1 1 1

1 1 12 1 1 1 1 1 1
2

1
2
1 (21)

P
k m ρ ak

k a y α m ikV ρ υ m ikV ρ γ t

m ρ α υ m ikV ρ γ t m ρ γ t

k a y α m ikV ρ υ m ikV ρ γ t m ρ α υ m

ikV ρ γ t m ρ γ t

=
1

sinh(2 )
[cosh [ ( − )](( + )( + ) ( )

+ (( + ) + 2 ) ( ) + ( )))

− cosh [ ( + )](( + )( + ) ( ) + (( + )

+ 2 ) ( ) + ( ))]e ,

′ ″

′ ″ ikx

1
(2)

2
2

2

23 2 2 2 2 2 2 2 2

2 2 23 2 2 2 2 2 2
2

2
2
2

12 2 2 2 2 2 2 2 1 2 2 12 2 2

2 2 1 2
2

2
2
1 (22)

and

P
k b y

k m ρ k b a
α m ikV ρ υ m ikV ρ γ t

m ρ α υ m ikV ρ γ t m ρ γ t

=
− cosh [ ( + )]

sinh [ ( − )]
[( + )( + ) ( )

+ (( + ) + 2 ) ( ) + ( )]e .′ ″ ikx

1
(3)

3
2

3

23 3 3 3 3 3 3 3 2

3 3 23 3 3 3 3 2 3
2

3
2
2 (23)

It should be noted that in the absence of the porous media (m 1j → and ν 0j → ), the above
equations tend to be early obtained by Moatimid.19

For the magnetic path:
According to Melcher,35 the following conditions must be satisfied.
The tangential component of the magnetic potential vanishes at the rigid boundaries, this

means that

ψ

x
y b= 0 at =1∂

∂
(24)

and
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ψ

x
y b= 0 at = − .3∂

∂
(25)

• The Maxwell’s conditions of the magnetic potential, where there are surface currents present
at the interfaces, resulted in
◦ The continuity of the normal component of the magnetic displacement of the plane interface is

n μ H μ H l y a ξˆ .( − ) = 0, = 1, 2, = (−) + .l l l l l
l

l+1 +1
+1 (26)

◦ The discontinuity of the tangential magnetic field components in the interface requires

n H H J l y a ξˆ × ( − ) = , = 1, 2, = (−) + .l l l f
l

l+1
+1

l
(27)

Applying the foregoing boundary conditions to the general solution as given in Equation (14),
the following can be concluded:

ψ x y t
i

ε
k b y

μ H μ H μ μ k a b μ μ k a b

μ μ H μ H k a b γ t

ωt c c

( , ; ) =
*
sinh [ ( − )]

×
[( − )(( − ) sinh [ (3 − )] − ( + )sinh [ ( + )])]

+2 ( − )sinh [ ( − )] ( )

× cos e + . .,ikx

1

1 1 2 2 2 3 2 3

2 2 2 3 3 2

⎧⎨⎩
⎫⎬⎭ (28)

ψ x y t

i

ε
k b a

μ H μ H μ μ k a b y

μ μ k b y γ t

μ H μ H μ μ k a b y

μ μ k b y γ t

ωt c c

( , ; ) =

*
sinh[ ( − )]

[( − )(( − )sinh[ (2 − + )]

− ( + )sinh[ ( + )])] ( )−

[( − )(( − ) sinh[ (2 − − )]

+ ( + ) sinh[ ( − )]] ( ))

cos e + . . ,ikx

2

1 1 2 2 2 3

2 3 1

2 2 3 3 1 2

1 2 2

⎧

⎨
⎪⎪⎪

⎩
⎪⎪⎪

⎫

⎬
⎪⎪⎪

⎭
⎪⎪⎪

(29)

and

ψ x y t

i

ε
k b y

μ μ H μ H k a b γ t

μ H μ H μ μ k a b

μ μ k a b γ t

ωt c c

( , ; ) =

*
sinh[ ( + )]

2 ( − )sinh [ ( − )] ( )

− [( − )(( − ) sinh [ (3 − )]

+ ( + ) sinh [ ( + )]] ( )

cos e + . .,ikx

3

2 1 1 2 2 1

2 2 3 3 1 2

1 2 2

⎧
⎨
⎪⎪

⎩
⎪⎪

⎫
⎬
⎪⎪

⎭
⎪⎪

(30)

where ε* is given by
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( )
( )

ε μ μ μ ak k a b μ μ μ ak

μ μ μ k a b ak

* = ( + )cosh(2 )sinh [2 ( − )] + − sinh (2 )

− + cosh [2 ( − )] sinh(2 ).

2 1 3 2
2

1 3

2
2

1 3

It should be noted that, in the absence of the periodicity of the magnetic field (ω 0→ ), the
above equations are similar to those obtained by AlHamdan and Alkharashi.31

Now, the boundary‐value problem has been completed. To proceed in light of linear stability
analysis, a remaining boundary condition must be present. As stated previously, in view of the
viscous potential theory, the viscous terms will appear only throughout the equation of
the normal stress tensor, which is eliminated from the linear conservation of momentum. At
the separation surface, the component of the total normal stress is discontinuous by the amount
of the surface tension. The total stress tensor of the system under investigation is defined as

σ σ σ= + ,ij ij ij
vis mag (31)

where σij
vis is the viscous stress tensor and σij

mag is the Maxwell magnetic stress.
These stresses may be formulated as follows:
A large number of partially important fluids (eg, water and oil) are incompressible and

exhibit a linear relation between the shear rate and strain, which are well known as the
Newtonian fluids and their constitutive equation is given by

σ Pδ η
v

x

v

x
= − + + ,ij ij

i

j

j

i

vis
⎛
⎝⎜

⎞
⎠⎟

∂

∂

∂

∂
(32)

where P is the pressure in the fluid and δij is the Kronecker delta.
It is worthwhile to mention that, there are also many fluids which did not behave as the

Newtonian fluids and have different constitutive equations, for example, toothpaste.
The magnetostatics and hydrodynamics are coupled together through the total stress tensor.

In vacuum, the Coulomb force density exerted on free charges can be recorded taking into
account the solenoid nature of the magnetostatic field. Furthermore, the derivation of the
Maxwell stress tensor for a magnetic permeability medium is illustrated, in detail, by Melcher35

σ μH H μH δ= −
1

2
.ij i j ij

mag 2 (33)

The derivation of the required dispersion relations will be derived in the next section.

3 | DERIVATION OF THE DISPERSION EQUATIONS

The components of the total force per unit area, exerted on the fluid interface, are related to
components of the stress tensor via the following relation:

F
σ σ
σ σ

n
n= ,

xx xy

yx yy

x

y
⎜ ⎟⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠ (34)
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where σ σ σ, , ,xx xy yy n ,x and ny are the components of the stress tensor and unit normal to the
interface, respectively.

At the fluid interfaces, the normal component of the stress tensor is discontinuous by the
surface tension value. This requires

n F χ S lˆ ‖ ‖ = , = 1, 2,l l l( +1)
2⋅ ∇ (35)

where χl l( +1) is the surface tension coefficient of the surfaces that separate fluid l from fluid

l + 1. Substituting from the solutions of ψ v,j j
1
( )

1
( ), and P j( = 1, 2, 3)j

1
( ) into the normal stress

conditions (35) and considering H h H H h H= , = ,0
(1)

1 0 0
(2)

2 0 and H h H=0
(3)

3 0 where
h h h1 2 3≠ ≠ , after lengthy but straightforward calculations, one obtains the following coupled
second‐order linear differential equations

f γ t f γ t l ig γ t l ig γ t a H ωt b ic γ t

a H ωt b ic γ t

( ) + ( ) + ( + ) ( ) + ( + ) ( ) + ( + cos ( ) + ) ( )

+ ( + cos ( ) + ) ( ) = 0

″ ″ ′ ′11 1 22 2 11 11 1 22 22 2 11 0
2 2

11 11 1

22 0
2 2

22 22 2

(36)

and

( )

( )

f γ t f γ t l ig γ t l ig γ t a H ωt b i c γ t

a H ωt b i c γ t

″ ( ) + ″ ( ) + ( + ) ′ ( ) + ( + ) ′ ( ) + + cos ( ) + ( )

+ + cos ( ) + ( ) = 0,

22 1 12 2 21 22 1 12 12 2 21 0
2 2

21 21 1

12 0
2 2

12 12 2

(37)

where the coefficients f l g a b, , , , ,i l i l i l i l i l and ci l are given in the Appendix A.
The amplitude of the elevation γ t( )1 and γ t( )2 are time‐dependent functions of time, which

determine the eigenvalue functions. The behavior of these functions governs the stability
behavior of the fluid sheet. To facilitate the following analysis, only the symmetric and
antisymmetric modes are considered.

3.1 | The symmetric and antisymmetric modes

The coupled second‐order linear differential equations (36) and (37) can be simplified by
considering the symmetric and antisymmetric deformations of the surface deflections ξ1 and ξ2.
Therefore, in view of this concept, the variables ξ1 and ξ2 may be described by

ξ Jξ ξ= = ,2 1 (38)

where the symmetric deformation J=−1, and simultaneously J = 1, referring to the
antisymmetric one. Considering the transformation (38) in the characteristic equations (36)
and (37), it can be concluded that

( )γ t a ib γ t c H ωt d il γ t″( ) + ( + ) ″( ) + + cos ( ) + ( ) = 01 1 1 0
2 2

1 1 (39)

and
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( )γ t a ib γ t c H ωt d il γ t″( ) + ( + ) ′( ) + + cos [ ] + ( ) = 0,2 2 2 0
2 2

2 2 (40)

where the coefficients a b c d, , , ,l l l l and ll are listed in the Appendix A.
The coupled differential equations (39) and (40) may be combined by adding them to give a

single dispersion equation as

( )γ t A iB γ t C H ωt D iL γ t″( ) + ( + ) ″( ) + + cos ( ) + ( ) = 0,0
2 2 (41)

where the coefficients A B C, , , and D are given as follows:

A a a B b b C c c D d d

L l l

= ( + )/2, = ( + )/2, = ( + )/2, = ( + )/2,

and

= ( + )/2.

1 2 1 2 1 2 1 2

1 2

The following section is devoted to analyzing the stability analysis in the previous case.

4 | STABILITY ANALYSIS IN THE PRESENCE OF A
UNIFORM MAGNETIC FIELD

For a uniform tangential magnetic field, the periodicity of the field will be disappeared.
Therefore, the previous dispersion equation, Equation (41), can be written as

γ t A iB γ t C H D iL γ t″( ) + ( + ) ′( ) + ( + + ) ( ) = 0.0
2 (42)

Equation (42) is a linear homogeneous second‐order differential equation with complex
coefficients.

Since the amplitude of the surface wave γ t( ) is a real function, one may separate the real and
imaginary parts to get

( )γ t Aγ t C H D γ t″( ) + ′( ) + + ( ) = 00
2 (43)

and

Bγ t Lγ t′( ) + ( ) = 0. (44)

Combining Equations (43) and (44), one gets

( )γ t C A L B H D γ t″( ) + − / + ( ) = 0.0
2 (45)

Equation (45) is a linear homogeneous second‐order differential equation; therefore, it may
have an exponential solution. It follows that the solution of the dispersion equation (45), may be
written as
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γ t γ( ) = e ,i t
0

Ω (46)

where γ0 is some finite constant, and Ω is another constant which determines the natural
frequency of the surface wave. From Equations (45) and (46), one finds

( )C AL B H DΩ − − / + = 0.2
0
2 (47)

Equation (47) represents a linear dispersion relation for the double interfaces that propagate
through the magnified streaming sheet in permeable media. This dispersion relation is satisfied
by the estimations ofΩ, which is so‐called the natural frequency, and k. The necessary criterion
of stability may be represented as

DH β+ > 0,0
2 (48)

where the coefficient β is given by β C AL B= − / .

The influence of the magnetic field on stability depends mainly on the sign of the parameter
D. If D > 0, this implies that H0

2 has a stabilizing influence and vice versa.
Lately, it has become convenient to depict the stability picture of the magnetic field intensity

H0
2 vs the wave number of the surface waves k. In fact, the parameter D depends on k.

Consequently, the implication of the sign of the parameter D needs that the domain of the
function H H k= ( )0

2
0
2 must depend on this behavior.

Before dealing with a numerical calculation, it is required to rewrite the stability criterion in
a convenient nondimensional form. This procedure depends mainly on the choice of some
characteristics. For this purpose, consider the characteristic length b, the characteristic time
b g/ , and the characteristic mass η b b g/2 . The other nondimensional quantities are given by

the following:

k
k

b
a a b ρ ρ

η

b
bg χ χ η bg

α α
η

b
ν ν

η

b
η η η H H η g b

= , = , = 1/ , = ,

= , = , = , and = / .

*
* * *

* * * *

l l l l

l l l l

2
( +1) ( +1) 2

( +1) ( +1)
2

2

2

2 2 0
2

0
2

2

Generally, the attention was focused on the relationship between the magnetic field
intensity Hlog 0

2 and the wave number of the surface wave k. Therefore, the stability
diagram were depicted as Hlog 0

2 vs k. In the following figures, the stable region is denoted
by the letter S. Simultaneously, the letter U stands for the unstable one. All the coming
figures depict the stability criterion that is given by Equation (48). In these figures, the
parameter D is always positive; this means that the tangential uniform magnetic field has a
stabilizing effect. It should be noted that this is an early result, which was confirmed by
many authors; for instance, see Zelazo and Melcher.9 This shed light on exploring the effect
of the various parameters on the stability configuration. The following figures show the case
of antisymmetric mode.

Figure 2 was displayed to indicate the influence of the sheet thickness on the stability
behavior. This figure represents a system having the following particulars:
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ρ ρ ρ m m m

V V V μ μ μ

η η h h h χ

χ ν ν ν α α

= 0.001, = 0.01, = 0.1, = 0.12, = 0.03, = 0.6,

= 15, = 10, = 5, = 20, = 30, = 10,

= 2.5, = 4, = 0.5, = 0.3, = 12, = 10,

= 15, = 10, = 12, = 7, = 1, = 3.

1 2 3 1 2 3

1 2 3 1 2 3

1 3 1 2 3 12

23 1 2 3 23 12

As seen from this figure, it is clear that the increase of the sheet thickness leads to an
increase in the stable region; this mechanism is enhanced at large values of the wave number.
This shows a stabilizing influence of this parameter for the selected input parameters. The
calculations presented thus far enable us to understand the role of the fluid dynamics on the
instability of the problem. Similar results were obtained earlier by El‐Shehawey et al.4

Furthermore, this is in agreement with the results that were obtained by El‐Dib and Matoog.7

The antisymmetric mode is pictured in Figure 3 to display the influence of the mass and heat
transfer parameter between the two‐phase layers (1) and (2). This parameter is denoted by the
symbol α12. The system chosen here is the same as that in Figure 2, except a = 0.3. As seen from
this figure, the unstable region is enhanced as the parameter α12 is increased, which shows a
destabilizing influence of this parameter. The destabilizing region is enhanced with increasing
wave number; nonetheless, this mechanism is in contrast with the parameter α23.

As presented in Figure 4, the parameter α23 has a stabilizing influence; therefore, it can be
concluded that the mass and heat transfer has a dual role in the stability picture; this result was
previously obtained by Moatimid.19

Figure 5 shows the influence of Darcy’s coefficient ν1 for a system having the same
particulars as given in Figure 2. In this figure, the solid curve shows the neutral stability of the
value of the Darcy’s coefficients ν = 501 , the value ν = 401 represents the dot‐dashed line, and
the dashed curve describes the value ν = 301 , while the dotted line indicates the case of ν = 201 .
It is shown that this parameter has a destabilizing influence on the stability configuration.
Actually, this role depends on the structure of the media. Additionally, this behavior is
enhanced at large values of the wave number.

In Figures 6 and 7, the solid curve is plotted at the value μ = 20.03 . The value μ = 16.03

corresponds to the dot‐dashed line, and the dashed curve represents the value μ = 12.03 , while
the value μ = 08.03 depicts the dotted curve. Inspection of Figure 6 shows that this parameter

FIGURE 2 Plots of the stability bound for Hlog 0
2 vs k for different values the parameter a for the mode

J = 1
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FIGURE 3 Plots of the stability bound for Hlog 0
2 vs k for different values of the parameter α12 at the mode

J = 1

FIGURE 4 Plots of the stability bound for Hlog 0
2 vs k for different values of the parameter α23 at the mode

J = 1

FIGURE 5 Plots of the stability bound for Hlog 0
2 vs k for different values of the parameter ν1 at the mode

J = 1
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has a stabilizing effect. Furthermore, the system is completely stable for all values of the wave
number as k > 1.22. Keep in mind that this figure represents the case of J = 1. The same
behavior was seen in the case of J = −1. This was observed in Figure 7. In the later case, the
transition curves change their behavior. As seen, the system is always stable for large values of
the wave number. Therefore, it is concluded that the magnetic permeability of the third
medium effect has a stabilizing influence on the stability picture. The same results were
approved by Alkharashi.12

In Figure 8, the solid curve is plotted at the valuem = 0.81 , the valuem = 0.71 corresponds to the
dot‐dashed line, and the dashed curve represents the value m = 0.61 , while the value m = 0.51

depicts to the dotted curve. This figure indicates the stabilizing influence of the porosity of the
antisymmetric mode (J = 1). This may occur due to the presence of the porous term in the governing
equation of motion as given in Equation (4). Actually, the porosity acts as a drag force. Therefore, it
reduces the instability of the system. The same mechanism occurs in the case of the symmetric mode
(J = −1). Therefore, Figure 9 was plotted. Therefore, the porosity of the first layer always plays a
stabilizing role in the stability picture in these modes of perturbation of the surface waves.

Figure 10 was plotted to indicate the influence of the change of the first fluid viscosity η1 on the
stability picture, where the values 6, 7, 8, and 9 are chosen for the quantity η1. The inspection of
Figure 10 reveals that the increasing of the viscosity ratio η1 enhances the stability regions. As seen
from this curve, for some value of the parameter η1, the system is completely stable. This was an
early result—it has been confirmed by many researchers; for instance, see Alkharashi et al.12

Figure 11 describes the influence of of the first fluid velocityV1 in the stability picture. In this
figure, the solid curve is plotted at the value V = 201 , the value V = 151 corresponds to the dot‐
dashed line, and the dashed curve represents the value V = 101 , while the value V = 51 depicts
the dotted curve. It was shown that the destabilizing region increasing with the increasing of
the velocity parameter. This indicated that velocity parameter has destabilizing influence, this
according to Awasthi36 and Moatimid et al.8

5 | STABILITY ANALYSIS OF THE PERIODIC MAGNETIC
FIELD

To avoid repetition of the calculations, as given in Equations (42), (43), and (44), the dispersion
equation in the present case may be written as follows:

FIGURE 6 Plots of the stability bound for Hlog 0
2 vs k for different values of the parameter μ3 at the mode J = 1
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FIGURE 7 Plots of the stability bound for Hlog 0
2 vs k for different values of the parameter μ3 at the mode

J = −1

FIGURE 8 Plots of the stability bound for Hlog 0
2 vs k for different values of the parameterm1 at the mode

J = 1

FIGURE 9 Plot of the stability bound for Hlog 0
2 vs k for different values of the parameter m1 at the mode

J = −1
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( )γ C LA B H ωt D γ t″ + − / + cos ( ) ( ) = 0.0
2 2 (49)

A small parameter ε can be used to determine the transition curves, which separate the
stable from unstable regions, according to Floquet theory.37 Typically, on the homotopy
perturbation method, one may choose a small parameter ε, such that ε [0, 1]∈ . Equation (49)
may be written as

d γ

dτ
δ εq τ γ+ ( − ˆ cos 2 ) = 0,

2

2
(50)

where τ ω t= is used, δ ω C LA B DH= (1/ )( − / + (1/2) ),2
0
2 and q DH ωˆ = − /2 .0

2 2

Equation (49) is the standard Mathieu differential equation. Both the characteristics and
the applications of the Mathieu functions were investigated in the McLachlan’ book.37 The
solutions of the Mathieu equation can be, in terms of certain considerations, periodic and the
system is then stable. Moreover, the relationship between the parameters δ and q̂ is considered
the basis for the adoption of a requirement for obtaining a periodic Mathieu function. To study

FIGURE 10 Plots of the stability bound for Hlog 0
2 vs k for different values of the parameter η1 at the mode

J = 1

FIGURE 11 Graph of the stability bound for Hlog 0
2 vs k for the parameterV1 at the mode the mode J = −1
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the stability of Equation (50), a simple perturbation technique was used to obtain the transition
curves, which separate the stability from instability regions.

An approximate solution to (50) is explored, by expanding γ and δ as follows:

γ τ ε γ εγ ε γ ε γ( , ) = + + + +0 1
2
2

3
3 ⋯ (51)

and

δ τ ε n εδ ε δ ε δ( , ) = + + + + ,2
1

2
2

3
3 ⋯ (52)

where n is a nonnegative integer. Substituting Equations (51) and (52) into Equation (50) and
equating coefficients of equal powers of ε, one finds

d γ

dτ
n γ+ = 0,

2
0

2
2
0 (53)

d γ

dτ
n γ δ q τ γ+ = −( − ˆ cos 2 ) ,

2
1

2
2
1 1 0 (54)

d γ

dτ
n γ δ q τ γ δ γ+ = −( − ˆ cos 2 ) − ,

2
2

2
2
2 1 1 2 0 (55)

and

d γ

dτ
n γ δ q τ γ δ γ δ γ+ = −( − ˆ cos 2 ) − − .

2
3

2
2

3 1 2 2 1 3 0 (56)

The solution of the zero‐order equation (53) may be represented as

γ nτ nτ= {cos , sin }.0 (57)

In the following, the higher approximation for the cases n = 0, 1, 2, 3 was determined.

5.1 | The case of n = 0

The bounded solution of Equation (57) gives

γ = 1.0 (58)

Therefore, Equation (54) becomes

d γ

dτ
δ q τ= −( − ˆ cos 2 ).

2
1

2 1 (59)

To make γ1 periodic, δ = 01 must be added; therefore, one gets
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γ q τ= −
1

4
ˆ cos 2 .1 (60)

After substituting γ γ, ,0 1 and δ1 into Equation (55), it takes the following form:

d γ

dτ
δ q q τ= − +

1

8
ˆ −

1

8
ˆ cos 4 .

2
2

2 2
2 2⎜ ⎟

⎛
⎝

⎞
⎠ (61)

To make γ2 periodic, there must be

δ q= − ˆ /8.2
2 (62)

Hence, the second‐order solution γ2 becomes

γ q τ=
1

128
ˆ cos 4 .2
2 (63)

After substituting γ γ γ δ, , ,0 1 2 1, and δ2 into Equation (56), the following form was obtained:

d γ

dτ
δ q τ q τ= − −

7

256
ˆ cos 2 +

1

256
ˆ cos 6 .

2
3

2 3
3 3 (64)

It is concluded that δ = 03 . Hence, the third‐order solution γ3 becomes

γ q τ q τ=
7

1027
ˆ cos 2 −

1

9216
ˆ cos 6 .3

3 3 (65)

Therefore, the transition curves separating stability from instability in the case of n = 0

being

δ
q
ε O ε= −

ˆ

8
+ ( ).

2
2 3 (66)

5.2 | The case of n = 1

The bounded solution of Equation (53) gives

γ c τ c τ= cos + sin ,0 1 2 (67)

here c1 and c2 are the integration constants. Then (54) becomes

d γ

dτ
γ c q δ τ c q δ τ

q
c τ c τ+ =

1

2
ˆ − cos −

1

2
ˆ + sin +

ˆ

2
( cos 3 + sin 3 ).

2
1

2 1 1 1 2 1 1 2⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠ (68)

To make γ1 periodic, the secular terms must be removed. Consequently, one gets
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δ
q

= ±
ˆ

2
.1 (69)

Then the solution of (68) can be written as

γ c τ c τ
q

c τ c τ= cos + sin −
ˆ

16
( cos 3 + sin 3 ),1 3 4 1 2 (70)

where c3 and c4 are the integration constants.
After substituting γ γ, ,0 1 and δ1 into Equation (55), the following form was obtained:

d γ

dτ
γ c

q
δ c

q
δ τ c

q
δ c

q
δ τ

qc δ qc τ qc δ qc τ

q c τ c τ

+ =
ˆ

2
− −

ˆ

32
+ cos + −

ˆ

32
+ −

ˆ

2
+ sin

+
1

16
ˆ +

1

2
ˆ cos 3 +

1

16
ˆ +

1

2
ˆ sin 3

−
1

32
ˆ [ cos 5 + sin 5 ].

2
2

2 2 3 1 1

2

2 2

2

2 4 1

1 1 3 2 1 4

2
1 2

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

(71)

To make γ2 periodic, the secular terms must be neglected. So, it is concluded from (71) that

δ
q

= −
ˆ

32
.2

2

(72)

Then the second‐order solution γ2 of (71), after neglect its secular term, can be written as

γ c τ c τ q c δ c τ q c δ c τ

q c τ c τ

= cos + sin −
1

16
ˆ
1

8
+ cos 3 −

1

16
ˆ
1

8
+ sin 3

+
1

768
ˆ [ cos 5 + sin 5 ].

2 5 6 1 1 3 2 1 4

2
1 2

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

(73)

After substituting of γ γ γ δ, , ,0 1 2 1, and δ2 into Equation (56), it takes the following form:

d γ

dτ
γ c q δ δ c q δ τ

c q δ δ c q δ τ
q

c τ c τ

q c δ c τ q c δ c τ

qc qc δ c q τ qc qc δ c q τ

+ = −
1

256
ˆ + +

1

2
ˆ − cos

−
1

256
ˆ + +

1

2
ˆ + sin +

ˆ

1536
[ cos 7 + sin 7 ]

− ˆ
1

192
+

1

32
cos 5 − ˆ

1

192
+

1

32
sin 5

+
1

2
ˆ +

1

16
ˆ +

1

1536
ˆ cos 3 +

1

2
ˆ +

1

16
ˆ +

1

1536
ˆ sin 3 .

2
3

2 3 1
2
1 3 5 1

2
2
1 3 6 1

3

1 2

2
1 1 3

2
2 1 4

5 3 1 1
3

6 4 1 2
3

⎜ ⎟

⎜ ⎟

⎜ ⎟

⎜ ⎟

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤
⎦⎥

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

(74)

Then the third‐order solution γ3 of Equation (74), after neglect its secular term, can be
written as
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γ c τ c τ
q

c τ c τ q c δ c τ

q c δ c τ qc qc δ c q τ

qc qc δ c q τ

= cos + sin 7 −
ˆ

73728
[ cos 7 + sin 7 ] +

1

24
ˆ

1

192
+

1

32
cos 5

+
1

24
ˆ

1

192
+

1

32
sin 5 −

1

8

1

2
ˆ +

1

16
ˆ +

1

1536
ˆ cos 3

−
1

8

1

2
ˆ +

1

16
ˆ +

1

1536
ˆ sin 3 .

3 7 8

3

1 2
2

1 1 3

2
2 1 4 5 3 1 1

3

6 4 1 2
3

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

(75)

Similar to the previous technique, the following can be concluded

δ q= −
1

512
ˆ .3
3 (76)

One finds the transition curve separating stability from instability regions and emanating
from n = 1 to be

δ
q
ε

q
ε

q
ε O ε= 1 ±

ˆ

2
−

ˆ

32
−

ˆ

512
+ ( ).

2
2

3
3 4 (77)

5.3 | The case of n = 2

The bounded solution of Equation (53) is given as

γ c τ c τ= ˜ cos 2 + ˜ sin 2 ,0 1 2 (78)

where c̃1 and c̃2 are the integration constants.
Similar arguments as previously viewed may be utilized to obtain the following transition

curves:

δ
q
ε O ε= 4 −

ˆ

48
+ ( ).

2
2 4 (79)

5.4 | The case of n = 3

The bounded solution of Equation (53) is given as

γ c τ c τ= ˆ cos 3 + ˆ sin 3 ,0 1 2 (80)

where ĉ1 and ĉ2 are the integration constants.
One finds tha the transition curve separating stability from instability regions and emanating

from n = 3 becomes

δ
q
ε

q
ε O ε= 9 +

ˆ

64
±

ˆ

512
+ ( ).

2
2

3
3 4 (81)

Taking the limit as ε 1→ , one can draw the obtained transition curves.
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In what follows, a sample of the transition curves will be plotted. For simplicity, the cases
when n = 1 and 3 were chosen. Typically—as shown by many researchers; for instance,
Nayfeh,38 the region between the two transition curves gives the unstable region. Otherwise, the
stable regions lie outside these curves; therefore, the following numerical discussions drawing
the transition curves. These transition curves are represented by Equations (77) and (81) in the
δ k− plane in case of antisymmetric mode, as well as the symmetric one, where J = 1 and
J = −1, respectively. In the following figures, considering the previous nondimension
quantities, a system having the following particulars were considered:

ρ ρ ρ μ μ μ η η H

ε ω h h h

= 0.001, = 0.01, = 0.1, = 4, = 50, = 20, = 2.5, = 0.2, = 3,

= 1, = 7, = 0.5, = 3, and = 0.2.

1 2 3 1 2 3 1 3 0
2

1 2 3

As presented in these figures, the transition curves are plotted for n = 1, 3. Therefore, the
resonance modes had appeared due to the periodicity of the tangential magnetic field.

Figure 12 depicts the two transition curves. These curves portioned the plane δ k− into stable
and unstable regions. This figure was plotted for the antisymmetric mode, where J = 1. As seen
from this figure, away from the case of the uniform magnetic field, it is found that the stability

FIGURE 12 Plots the transition curves at n = 1, 3 bound for δ vs k at J = 1

FIGURE 13 Plots of the transition curves at n = 3 bound δ vs k for different values of the magnetic field
intensity at J = 1
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diagram is portioned into several parts of stable and unstable regions. To indicate the influences of
the different parameters in the stability picture, it is convenient to plot the transition curve at a
certain n. Therefore, Figure 13 was depicted to indicate the influence of the magnetic field intensity
on the transition curves at n = 3. As seen from this figure, the unstable region increases with the
increasing of the magnetic field intensity H0

2. This result agrees with the study of Alkharashi and
Gamiel25 in their studying about a periodic normal electric field. It is worthwhile to observe that
this mechanism is in contrast with that seen in the case of the uniform magnetic field. Therefore,
the magnetic field played a dual role in the stability profile.

Figures 14 and 15, the solid curve is plotted at the value μ = 503 , and the value
μ = 303 corresponds to the dot‐dashed line, while the value μ = 103 depicts to the
dotted curve. The system chosen here is the same as in Figure 12, except
a μ μ ω H h= 0.05, = 80, = 30, = 2, = 0.1, and = 0.3.1 2 0

2
2 Figure 14 was depicted to in-

dicate the influence of the magnetic permeability of the third medium μ3 on the stability
picture. As seen from Figure 14, the unstable region decreases with the increasing of the
magnetic permeability at antisymmetric mode J = −1. This shows a stabilizing influence of
this parameter. Similar figure was plotted in the previous case, where the uniform field was

FIGURE 14 Graph of the transition curves at n = 3 bound δ vs k for different values of the magnetic
permeability μ3 at J = 1

FIGURE 15 Plot of the transition curves at n = 3 bound δ vs k for different values of the magnetic
permeability μ3 at J = −1
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affected. Figure 15 was plotted for the case of the symmetric mode as J = 1. In contrast with
the previous case as J = −1, the unstable region is increased with the increase of this
parameter. Therefore, the magnetic permeability has a destabilizing effect on the wave
motion at symmetric mode due to the periodic magnetic field. This shows that the role of
this parameter, depends on the mode of the surface wave. Similar results are previously
obtained by Moatimid.39

Figure 16 was depicted to illustrate the influence of the frequency of the magnetic field for
the transition curves at the resonance n = 1 of antisymmetric mode, where J = 1. The system
chosen here is the same as in Figure 14 at μ = 103 with the variation of the magnetic field
periodicity ω. As seen from this figure, the unstable region decreases with the increasing of the
magnetic field frequency ω for all values of the wave number k. The same behavior was shown
in Figure 17. The final figure was plotted for the case, where n = 1, and for symmetric mode,
where J = −1. From these two figures, it was found that the increasing of the values of the
magnetic field frequency ω increases the stable regions. This shows a stabilizing influence of the
periodicity. Typically, this result was initially shown by several researchers (for instance, see
El‐Dib and Matoog7).

FIGURE 16 Graph of the transition curves at n = 1 bound δ vs k for different values of the magnetic field
frequency at J = 1

FIGURE 17 Graph of the transition curves at n = 1 bound δ vs k for different values of the magnetic field
frequency at J = −1
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6 | CONCLUDING REMARKS

In the present work, the ferrodynamic instability problem of double interfaces separated three
incompressible viscous fluids was studied. The problem meets its significance from the geophysics
point of view. In addition, the case of the separation of water from oil‐water mixture depends mainly
of the problem of two‐phase fluids. The interfaces, in the current study, allowed a transfer of mass
and heat. To relax the mathematical manipulation, the analysis followed a simplified formulation that
was first established by Hsieh.17,18 The transfer of the mass and heat across the interfaces was
revealed throughout two parameters α12 and α23. Undoubtedly, this formulation facilitated the
complexity of the practical applications. The system was stressed upon by horizontal harmonic
magnetic fields, of different strengths, which admitted the presence of free‐surface currents. The
analysis was undertaken principally by the coupling between these parameters. Typically, as other
interface stability problems, the hydrodynamic equations and Maxwell equations were solved
individually. Simultaneously, the interaction between the hydrodynamic and magnetic field occurred,
only, throughout the stress balance across the interfaces; the simplified version of this problem was
already performed by Moatimid.19 Therefore, to avoid the length of the manuscript, the details of the
derivations were ignored in the present manuscript. So, the analysis of the current problem seems
hard to understand. Due to the vast importance of the practical applications of porous media, the
attention here was focused on the porous media parameters and the viscous effects. To avoid the
complexity of the mathematical analysis in considering the viscous effects, the viscous potential
theory was utilized. The procedure resulted in coupled linear second‐order differential equations of
complex and periodic coefficients. To simplify the mathematical treatment, the symmetric and
antisymmetric modes of perturbation were only considered. The stability analysis was theoretically
discussed and the results were confirmed in the uniform as well as periodic magnetic field. The
growth rate of the perturbation was also evaluated for the intensity of magnetic field vs the wave
number of the surface waves. In case of the oscillating field, the transition curves were obtained. The
numerical calculations, draw the following concluding remarks:

For uniform magnetic field:
In case of the antisymmetric mode J( = 1),

• The sheet thickness plays a stabilizing influence. This result was previously shown by El‐
Shehawey et al.4

• The mass and heat transfer play a dual role in the stability configuration. In other words, the
parameter α12 has a destabilizing influence and vice versa for the parameter α23. This behavior
is shown previously by Moatimid.19

• Darcy’s coefficient ν1 has a destabilizing influence.
• Actually, the porosity acts as a drag force. Therefore, it has a stabilizing effect in the stability
profile.

• The magnetic permeability μ3 has a stabilizing effect.

In case of the symmetric mode J( = −1),

• The dynamic viscosity η1 has a stabilizing influence.
• The magnetic permeability μ3 has a stabilizing effect.
• The streaming V1 has a destabilizing influence. This is an early result, which was shown by
many other researchers.
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For periodic magnetic field:

• The standard instability, the parametric instabilities caused by resonances between the
surface waves and excited periodic magnetic field are obtained.

• Several transition curves are theoretically obtained.
• The numerical calculations show that, the magnetic permeability μ3 has a dual effect in the
stability picture. In other words, the magnetic permeability μ3 has a stabilizing role in
antisymmetric mode, and vice versa for symmetric mode.

• The periodicity of the magnetic field has a stabilizing influence.
• The magnetic field intensity plays a dual role in the stability picture. In other words, the
uniform magnetic field has a stabilizing role, and vice versa for the periodic field.
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APPENDIX A

Coefficients that were appearing in Equations (36) for l = 1 and (37) for l = 2 were listed as
follows:
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ρ b a k h a b k ρ ak
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The coefficients that were appearing in the Equations (39) and (40) are listed as follows:
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