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longitudinal dose response modeling
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Abstract

Objectives: This work aimed at investigating the potential of solid lipid nanoparticles (SLN) as
carriers for topical delivery of Ketoprofen (KP); evaluating a novel technique incorporating
Artificial Neural Network (ANN) and clustered bootstrap for optimization of KP-loaded SLN
(KP-SLN); and demonstrating a longitudinal dose response (LDR) modeling-based approach to
compare the activity of topical non-steroidal anti-inflammatory drug formulations.
Methods: KP-SLN was fabricated by a modified emulsion/solvent evaporation method. Box–
Behnken design was implemented to study the influence of glycerylpalmitostearate-to-KP ratio,
Tween 80, and lecithin concentrations on particle size, entrapment efficiency, and amount of
drug permeated through rat skin in 24 hours. Following clustered bootstrap ANN optimization,
the optimized KP-SLN was incorporated into an aqueous gel and evaluated for rheology, in vitro
release, permeability, skin irritation and in vivo activity using carrageenan-induced rat paw
edema model and LDR mathematical model to analyze the time course of anti-inflammatory
effect at various application durations.
Results: Lipid-to-drug ratio of 7.85 [bootstrap 95%CI: 7.63–8.51], Tween 80 of 1.27% [bootstrap
95%CI: 0.601–2.40%], and Lecithin of 0.263% [bootstrap 95%CI: 0.263–0.328%] were predicted
to produce optimal characteristics. Compared with profenid� gel, the optimized KP-SLN gel
exhibited slower release, faster permeability, better texture properties, greater efficacy, and
similar potency.
Conclusions: SLNs are safe and effective permeation enhancers. ANN coupled with clustered
bootstrap is a useful method for finding optimal solutions and estimating uncertainty
associated with them. LDR models allow mechanistic understanding of comparative in vivo
performances of different topical formulations, and help design efficient dermatological
bioequivalence assessment methods.
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Introduction

Ketoprofen (KP), a BCS class II drug (poor solubility and

high permeability), is a potent non-steroidal anti-inflamma-

tory drug (NSAID) used for alleviating symptoms of

rheumatoid arthritis, the most common cause of functional

disability with no curative treatment to date (Abramson &

Yazici, 2006). Owing to its short biological half-life (2–

4 hours), large doses of the KP need to be frequently

administered through the oral route. Therefore, rheumatoid

arthritis patients on KP oral dosage forms for extended

periods of time are at risk of developing ulcers, renal failure

or liver dysfunction (Singh et al., 1994). A smart way to get

around the toxic effects of KP is to deliver it through the skin.

Unfortunately, this is not an easy way to adopt because of the

barrier properties of the stratum corneum.

Being small in size and able to control the release of drug

molecules, solid lipid nanoparticles (SLN) have received

great attention as potential carriers for topical dermatological

delivery (Utreja & Jain, 2001). Since it consists of high

melting point lipids in the core and nontoxic surfactants in the

coat layer, it is capable of housing both lipophilic and

hydrophilic drugs (Utreja & Jain, 2001). Because of the

colloidal nature of the SLN, secondary vehicles (e.g. gels,

creams or ointments) must be used to increase its viscosity for

dermal administration, facilitate its application, and extend its

residence time on the skin (Khurana & Bedi, 2013).

Artificial neural network (ANN) is a flexible tool that

mimics human brain through passing and processing signals

across layers of neurons interconnected by synapses (Sun

et al., 2003). Hence, ANN is well-suited for approximating

complex, non-linear relationships between multiple causal

and response variables. Combined with factorial designs that

allow investigating several formulation factors simultaneously

in a limited number of experiments (Cochran, 1992), ANN
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has been successfully utilized to develop several novel

formulations (Hussain et al., 1991; Takahara et al., 1997;

Takayama et al., 1999).

When it comes to optimization based on non-linear

models, assessing reliability of optimal solutions is important.

Although substantial number of studies use ANN for

optimization of drug delivery systems, few of them try to

evaluate the robustness of their non-linear optimization. The

term ‘‘robustness’’ here describes the ability of the model to

replicate the optimal solution, irrespective of prior assump-

tions. Resampling techniques, such as bootstrapping, can test

the robustness of optimization results (Arai et al., 2007;

Onuki et al., 2008; Duangjit et al., 2014). The basic idea of

bootstrap is random sampling of the original dataset with

replacement to generate arbitrary number of subsets belong-

ing to the empirical distribution of the original data. Bootstrap

resampling offers a non-parametric technique to estimate

confidence intervals, bias, and variance of a given estimator.

Profound statistical theory behind bootstrap can be found

elsewhere (Efron & Tibshirani, 1994).

To assess bioavailability and bioequivalence, The United

States (US) Food and Drug Administration (FDA) has relied

on in vitro and in vivo methods with in vivo pharmacody-

namic effect studies being the most preferred (Title 21 Code

of Federal Regulations (CFR) 320.24). For topical cortico-

steroids, the FDA guidelines released in 1995 recommend

multiple dose duration studies that are based on vasocon-

strictor assay (http://www.fda.gov/cder/guidance/dd098fn.

pdf). The guidelines also suggest measurements over multiple

time points and maximum effect (Emax) model to describe the

area under effect curve versus dose duration data. To our

knowledge, this approach has never been applied to assess the

anti-inflammatory response to NSAID topical formulations.

A large number of studies have reported on novel KP

topical formulations (more than 50 papers since 1990 on

MEDLINE/PubMed using the keywords: Ketoprofen-

Formulation-Topical). However, as far as we know, one

group attempted to investigate the potentials of SLN as a

carrier for topical delivery of KP (Kheradmandnia et al.,

2010). Therefore, our primary objective was to develop,

optimize, and characterize KP-SLN gel for topical delivery.

Secondary objectives were to evaluate a clustered bootstrap-

ANN methodology for optimization of the SLN loaded with

KP; and demonstrate a pharmacodynamic model-based

approach to compare anti-inflammatory activity of topical

NSAID formulations.

Materials and methods

Materials

Ketoprofen was purchased from Sigma Company (Cairo,

Egypt). Glycerylpalmitostearate (Precirol ATO 5) was kindly

donated by Gattefossé, France. L-a Phosphatidylcholine

(Soybean lecithin) and dialysis bags with molecular weight

cut off of 12 000 Da were purchased from Sigma-Aldrich (St.

Louis, MO). Carbopol 974 NF, Tween 80, Carrageenan,

Disodium hydrogen orthophosphate and Potassium dihydro-

gen orthophosphate were purchased from El-Nasr

Pharmaceutical Chemical Company, Cairo, Egypt. Other

chemicals and reagents used were of analytical grade.

Experimental design

Based on a preliminary study, glycerylpalmitostearate (GPS)

was selected as the lipid, Tween 80 as the surfactant, and

soybean lecithin as the phospholipid for preparing the SLN

loaded with KP. The influence of lipid-to-drug ratio (X1),

concentration of Tween 80 (X2), and concentration of lecithin

(X3) on particle size (Y1), entrapment efficiency (Y2), and

cumulative amount of drug permeated through the excised rat

skin in 24 hours (Y3) was studied using a Box–Behnken

design with four center points (Table 1). All experiments were

performed in triplicates.

Preparation of the SLN

The KP-SLN were prepared according to a modified emul-

sion/solvent evaporation method (Cavalli et al., 1996).

Briefly, KP, GPS, and soybean lecithin are added to 10 ml

methylene chloride forming the oil phase. The aqueous phase

was 25 ml surfactant solution in distilled water. Both phases

were heated to 60 �C. The organic phase was dropped onto the

hot aqueous phase at a constant rate under homogenization

and sonication. Homogenization was carried out at

13 500 rpm by Ultra Turrax� T 25 basic homogenizer

(IKA, Staufen, Germany) for 10 min. The resulting colloidal

dispersion was poured into 25 ml cold distilled water under

stirring at 1000 rpm for 2 h at 2 �C in an ice bath to allow for

the hardening of the SLN. This nanoemulsion was centrifuged

using a cooling centrifuge (SIGMA 3-30K, Steinheim

Germany) at 14 000 rpm for 5 h at 4 �C. The precipitate was

washed twice with distilled water, freeze-dried and kept at

4 �C for further characterization.

Determination of KP entrapment efficiency

The amount of entrapped KP was determined by lysis of the

separated precipitate (20 mg) in 50 ml of methylenechloride,

centrifugation of the solution at 4000 rpm for 30 minutes and

Table 1. Layout of the causal factors levels, and augmented Box–
Behnken design for studying KP-SLN.

Level

Factor �1 0 +1

X1: GPS (lipid):Drug 7.50 8.75 10
X2: Tween 80 (%) 0.5 1.5 2.5
X3: Lecithin (%) 0.250 0.375 0.50

Formulation X1 X2 X3

F1 �1 �1 0
F2 �1 +1 0
F3 +1 �1 0
F4 +1 +1 0
F5 0 �1 �1
F6 0 �1 +1
F7 0 +1 �1
F8 0 +1 +1
F9 �1 0 �1
F10 �1 0 +1
F11 +1 0 �1
F12 +1 0 +1
F13* 0 0 0

*F13 was replicated four times.

2 M. H. Elkomy et al. Drug Deliv, Early Online: 1–13
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then analyzing the drug content spectrophotometrically at

259 nm after suitable dilution. The % entrapment of KP was

determined using the following formula:

% Entrapment ¼ Entrapped drug

Total drug
� 100 ð1Þ

Particle size and size distribution measurements

Dynamic light scattering was used to assess the mean particle

size and size distribution of KP-SLN using a Malvern

Nanosizer ZS (Zetasizer Nano ZS, Malvern Instruments,

Malvern, UK) (Guinedi et al., 2005). The samples were

diluted with distilled water before measurement.

Ex vivo skin permeation of KP released from the
KP-SLN

Ex vivo permeation was determined by Franz diffusion

(surface area 5 cm2). Excised rat abdominal skin (thickness

1.2 ± 0.2 mm) was used as the diffusion membrane. Equal

volumes (2 mL) of KP–SLN dispersions equivalent to 5 mg

KP was applied on the epidermal surface of the skin, which

was stretched over the lower open end of the tube with the

subcutaneous side facing upwards and the dermal side facing

downwards into the receptor compartment (Attia, 2009). The

dissolution medium used was phosphate buffer saline (PBS)

pH 7.4. The saturated solubility of KP in the dissolution

medium was 0.07% w/v. Therefore, to ensure sink conditions,

100 ml of the medium was used. To reach the physiological

skin temperature (i.e. 32 ± 1 �C), the thermostating bath

temperature was set at 37 ± 1 �C throughout the experiments

under continuous stirring with magnetic bar at 100 rpm

(Montenegro et al., 2012). At predetermined time intervals

(1, 2, 3, 4, 5, 6, 8, 10,12 and 24 h), 1 ml was withdrawn from

the receptor compartment and was compensated with equal

volume of fresh medium to maintain sink condition. The

withdrawn samples were filtered through 0.45 mm pore filter

and finally measured at 259 nm using a spectrophotometer.

ANN modeling

ANN was built in R version 2.15 using the package

‘‘neuralnet’’ (Günther & Fritsch, 2010). The package adopts

feed-forward multilayer perceptron (MLP) to approximate

functional relationship between causal and response variables.

The underlying structure of MLP is units (neurons) organized

in an input layer (representing causal factors), hidden layer(s),

and an output layer (representing response variables). The

units in the neighboring layers are fully interconnected

through synapses. Data passes the neural network as signals

traveling through synapses. The strength of a signal is

represented by a weight attached to each of the synapses.

The signals are processed in the neurons and all incoming

signals are added and activation function is applied to the

resulting sum. MLP with one hidden layer computes the

following function:

y ¼ O W0 þ
X

j

Wj � O
X

i

Wij � Xi

" #" #
ð2Þ

where y denotes the response variable, W is the weight vector,

X is the causal factors vector, and O is the activation function.

In this analysis, the activation function was set to inverse logit

function:

O zð Þ ¼ 1

1þ e�z
, z 2 �1, þ1½ � ð3Þ

The ANN is trained using measured responses. During the

training process, the weights are adjusted by a learning

algorithm that minimizes the differences between measured

responses and the output calculated by the neural network

(error function). In this analysis, the learning algorithm was

set to resilient back-propagation with weight back tracking to

minimize sums of squared error function.

In this work, a single hidden layer was used. To avoid over-

or under-fitting, leave-one-out cross validation (LOOCV)

technique (Ueda & Nakano, 1995) was used to determine the

number of units in the hidden layer. In this technique, the

dataset was split n times to sets of n� 1 observations for

calibration and one observation for validation. For each

calibration set, the ANN model was refitted then the updated

model was used to predict the observation in the validation

set and Pearson’s correlation coefficient (r) of observed

and predicted response was calculated. The number of

hidden units maximizing the sum of r values of all responses

was chosen.

Multi-objective simultaneous optimization

Given more than one response variable to optimize simul-

taneously, the variables were incorporated into a single

function that is based on standardized Euclidean distance

(Takayama & Nagai, 1991):

S ¼
Xn

i¼1

FDi � FOi

SDi

� �2
( )

ð4Þ

where FD denotes the optimum value of each response when

optimized individually, FO is the predicted value of each

response, and SD is the standard deviation of the observed

values of each response. The combination of causal factors

values that minimizes S under the restriction of the experi-

mental design space was taken as the optimal solution.

Clustered bootstrap resampling

Clustered bootstrapping (CBS) was deployed to estimate the

uncertainty associated with the simultaneous optimal solution

provided by the ANN model using the original data. The

original dataset was randomly sampled with replacement

(Efron & Tibshirani, 1994) to create 250 replicate datasets

each with the same number of experimental units as the

original dataset. Subsequently, the ANN model was fitted to

the bootstrap datasets. Accordingly, 250 bootstrap optimal

solutions were obtained. Cluster analysis via the k-midoid

algorithm (Hennig, 2014) was used to identify an optimal

neighborhood around the original optimal solution. The 2.5th

and 97.5th percentiles of the optimal neighborhood were

calculated.

DOI: 10.1080/10717544.2016.1176086 Topical ketoprofen nanogel 3
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Morphological evaluation of KP-SLN dispersion

The optimized KP-SLN formulation was chosen for morpho-

logical examination of the SLN. Before determination, the

sample was diluted 10 times using distilled water. A drop of

the KP-SLN dispersion was applied on a carbon-coated grid.

The dispersion was left for 2 min, to allow its absorption on

the carbon film, and the excess liquid was drawn off with

filter paper. The aqueous solution of phosphotungstic acid

was used as a negative stain. Samples were examined by TEM

(Jeol, Tokyo, Japan) operating at an accelerating voltage of

80 kV (Manconi et al., 2003).

Preparation of KP-SLN-based topical gel (KP-SLN gel)

The optimized KP-SLN formulation was incorporated into a

topical gel using Carbopol 974 NF (KP-SLN gel). Weighed

quantity of Carbopol 974 NF was dispersed in water (2%w/w).

The dispersion was stirred for 2–3 h. KP-SLN (equivalent to

2.5% w/w of KP) was incorporated into the gel base. It was

stirred for 1 h, and pH was adjusted to 6.0 ± 0.06, using (1N)

sodium hydroxide solution to obtain KP-SLN gel with

adequate consistency suitable for topical application

(Kumbhar et al., 2013; Patel et al., 2013).

Rheological properties determination

The viscosities of KP-SLN gel and commercial gel (profenid�

gel) were measured by a Brookfield Viscometer (Brookfield

DV-III Ultra R/S + RHEOMETER, MA, USA) using spindle

CC 52. About 0.5 gm of the tested formulae was applied to the

plate and left until the temperature of the cone reached

25 ± 1 �C. The measurement was started at 20 rpm; the speed

was gradually increased till reached 200 rpm, the speed was

then reduced gradually until reaching the starting rpm. The

shear stress versus shear rate measurements were analyzed

non-parametrically by calculating the area of hysteresis loops.

The linear trapezoidal rule was used to calculate the area

under the down and upper curves that were subtracted to get

the hysteresis area.

Viscosity (Z) versus shear rate (S) data were analyzed

using Ostwade’s power equation (Battista, 1985):

� ¼ KS�n ð5Þ

where K is a constant, and n is a parameter measuring

thixotropic degree. The value of n was calculated as the slope

of the linear relationship between log � and log S.

Rheology parameters were compared between the opti-

mized KP-SLN gel and the commercial gel by means of a

two-sided Student’s t-test assuming unequal variance with

p50.05 as the minimal level of significance.

In vitro release study of KP from KP-SLN gel

In vitro release of KP from KP-SLN gel and commercial gel

(profenid� gel) was evaluated using vertical diffusion Franz

cells with an effective diffusion area of 5 cm2 (Okamoto et al.,

1988). An amount of KP-SLN gel (2.5% w/w KP) and

commercial gel (drug content 2.5% w/w KP) equivalent to

5 mg KP was placed in the donor compartment. The receptor

compartment was maintained at 37 ± 1 �C and stirred by a

magnetic bar at 100 rpm. The donor compartment was

separated from the receptor compartment by cellulose

dialyzing membrane with molecular weight cut off of

12 000 Da, which was soaked in the receptor medium

overnight. The receptor chamber contained 100 ml PBS

(pH 7.4). Samples of 1 ml were withdrawn at definite time

intervals (1, 2, 3, 5, 7.5, 10, 12 and 24 h), then the release

medium was compensated with equal volumes of fresh

medium to ensure sink condition. Samples were filtered

through 0.45 mm pore filter and analyzed for drug content by a

UV visible spectrophotometer at 259 nm after appropriate

dilutions. Kinetics of KP release from the KP-SLN gel and

commercial gel was analyzed according to zero-order, first-

order, and Higuchi diffusion models.

Ex-vivo permeability of KP released from the
KP-SLN gel

Ex vivo permeation of KP across excised rat abdominal skin

from a 1 gm of 2.5% w/w KP-SLN gel and profenid� gel was

studied using Franz diffusion cell as described above.

Cumulative amount of KP permeated through excised rat

skin per unit surface area versus time data were analyzed

using the following Fick’s diffusion model (Jenning et al.,

2000):

Qt=A ¼ K 0C0 D0t � 1

6
� 2

�2

X1
n¼1

�1ð Þn

n2
exp �D0n2�2t
� �" #

ð6AÞ

K 0 ¼ K � L ð6BÞ

D0 ¼ D=L2 ð6CÞ

where Qt is the cumulative amount of KP in the receptor

phase at time t, A is the area of application, C0 is the initial

concentration in the donor phase, K is the partition coefficient

of KP between the membrane and the donor phase, D is the

diffusion constant, and L is the thickness of the membrane.

The diffusion parameter D0 and partition parameter K0 were

estimated using Levenberg-Marquardt non-linear regression

(Elzhov & Mullen, 2015). The permeability constant (Kp),

steady-state flux (Jss), and lag time (Tlag) were calculated as:

Kp ¼ K 0 � D0 ð7AÞ

Jss ¼ Kp � C0 ð7BÞ

Tlag ¼ 1=ð6D0Þ ð7CÞ

Previously calculated parameters such as K0, D0, Kp, Jss,

and Tlag were compared between the optimized KP-SLN gel

and the commercial gel by means of two-sided Student’s t-test

assuming unequal variance with p50.05 as the minimal level

of significance.

Primary skin irritation study

The skin irritation potential of the KP-SLN gel was evaluated

by acute skin irritation test as per OECD Guidelines. This

study was approved by the ethical committee of Faculty

of Pharmacy, Beni-Suef University. Healthy male rabbits

4 M. H. Elkomy et al. Drug Deliv, Early Online: 1–13
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weighing 2–2.5 kg were used for the study (n¼ 3). Animals

were divided into four groups. The groups were categorized

into positive control (A) (1% formaldehyde solution), negative

control (B) (without any treatment), KP-SLN gel (C), and

blank SLN gel (D). An area of rabbits back (0.4 cm2) was

shaved carefully, treated with 0.5 g of the test substances

individually, and covered with an adhesive tape. The rabbits

were then returned to their cages and were examined at 24, 48

and 72 h after the application of formulation. The skin was

evaluated and scored for erythema and edema which served as

indicators of sample irritation potential (Wavikar & Vavia,

2013).

In vivo activity and pharmacodynamics modeling

The study design used for evaluating the anti-inflammatory

equivalence of the KP-SLN gel and the commercial formu-

lation (profenid� gel) was based on the 1995 FDA guidelines

for assessing bioequivalence of topical dermatological cor-

ticosteroids. The protocol was approved by the ethical

committee of Faculty of Pharmacy, Beni-Suef University.

Carrageenan-induced rat paw edema model (Özgüney et al.,

2006) was used to evaluate the anti-inflammatory activity.

Eighteen female Wistar rats (weight 180–200 g) were

assigned to 6 groups of three. Combinations of treatments

(test and reference) and dose durations (0.5, 2, and 6 hours)

were randomly assigned to the animal groups.

Edema was induced by injecting 1%w/v saline solution of

carrageenan in the sub-plantar tissue of the right hind paw of

each rat. The paw thickness was measured using a caliber

before and 5 hours after the injection to ensure that the edema

was induced (Morris, 2003). After application of the

treatment to the right hind paw it was occluded with 3 M

surgical tape and gauge to prevent licking of the gel. The paw

thickness was measured before application of the treatment

(Baseline), and at 0.5, 1, 2, 6, 16, 20, and 24 h after the

baseline measurement. Measurement times in each group

varied according to the assigned treatment duration so that the

first measurement is obtained at the time of treatment

removal, and the last measurement is obtained after 24 h

from the baseline measurement. For instance, in the group

assigned to the 6 h dose duration, measurement times were at

6, 16, 20, and 24 h from the baseline. Three rats received

carrageenan but were not treated with either preparation

served as a positive control group.

In each animal group, the percentage change in rat paw

thickness from baseline was taken as the response and was

calculated as:

% Change from baseline ¼ h0 � ht

h0

� 100 ð8Þ

where h0 is thickness at baseline, and ht is thickness measured

at time t. The responses were adjusted for treatment-

independent recovery in the control group:

% Change from baseline adjustedð Þ
¼ % Change treatedð Þ �% Change untreatedð Þ

ð9Þ

The time course of edema thickness change following

application of the KP-SLN gel and commercial gel

formulations for different dose durations, were described by

the following longitudinal dose response (LDR) model:

Effect ¼ Emax Doseð Þ � Time

T50 þ Time
ð10AÞ

and

Emax Doseð Þ ¼ Smax � Dose

SD50 þ Dose
ð10BÞ

where T50 is the time at which 50% of the maximum change is

reached, Smax is the maximum change, and SD50 is the dose

producing half-maximal change. The parameters Smax, SD50,

and T50 measure the efficacy, potency, and delayed response

of the formulation, respectively. The model parameters were

estimated using the Levenberg–Marquardt non-linear regres-

sion (Elzhov & Mullen, 2015).

To estimate the distribution of the model parameters and to

test the hypothesis of KP-SLN gel superiority, a one-sided

permutation test was performed (Tsai et al., 1999). The

residuals defined as the deviation between calculated and

model-predicted responses, were permuted and added to the

predicted values, thus creating a new dataset. This process

was repeated 1000 times creating 1000 permuted datasets. For

each permutation, the model was fitted to generate 1000 Smax,

SD50, and T50 parameter estimates for each treatment. The

one-sided p-value for the null hypothesis test that the KP-SLN

gel is not superior to the commercial gel, was calculated as

the proportion of times the difference between the corres-

ponding parameters of both formulations fell below or above

zero. Additionally, the generated parameter estimates were

used to establish the 95% confidence intervals on the

parameters by defining the 2.5th and 97.5th percentiles.

Results and discussion

ANN modeling

It is well known that topical formulations determine bioavail-

ability and clinical efficacy of NSAIDs through impacting

their release and skin penetration (Tsai & Chuang, 1999).

Therefore, understanding the complex relationship between

formulation process parameters and physicochemical/bio-

logical responses is imperative for designing effective

formulations. Once such relationship has been delineated,

identifying the optimal combination of formulation variables

becomes feasible.

Response surface methods based on multiple regression

analysis and quadratic modeling have been the gold standard

for seeking optimized formulations. However, these methods

assume pre-specified relationship between covariates and

response variables, for instance as linear or second-order

polynomial. Additionally, these methods usually produce

inaccurate optimal solutions due to its limited application to

very low level of covariates (Takayama & Takahara, 1999).

To avoid these drawbacks, we have used ANN for optimiza-

tion of KP-SLN and combined it with clustered resampling

technique to estimate the uncertainty associated with the

ANN optimal solution.

Particle size (PS), entrapment efficiency (EE), and cumu-

lative percentage permeated in 24 h (Q24) values used for
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training our ANN model are listed in Table 2. PS values

ranged from 50.4 to 122.5 nm, EE from 48.2 to 90%, and Q24

from 26 to 78%, respectively. The wide variations in these

responses among the experiments suggest that they were

substantially influenced by changes in the levels of causal

factors. Three units in the hidden layer were associated with

minimal prediction error based on the LOOCV statistical

analysis. The underlying structure of the final ANN model

used to describe the relationship between the causal factors

(lipid-to-drug ratio, %Tween 80, and %Lecithin) and

the response variables (PS, EE, Q24) with the synaptic

weight estimates is shown in Figure 1. The model described

the observed data adequately as indicated by the close

agreement between measured and model predicted responses

(Figure 2).

Response surface exploration

Response surface plots in Figure 3 show the approximated

actual relationships between causal factors and response

variables. Each plot exhibits the effect of two causal factors

after fixing the third one at the low level value.

As lecithin concentration was held constant, PS was

affected by the interaction between lipid and surfactant levels

(Figure 3(A1)). PS less than 60 nm (the dark zone) can be

spotted in two regions; the first when the lipid-to-drug ratio is

7.5–8.5 and %Tween 80 is 1.2–1.8%; the second region when

the lipid-to-drug ratio is greater than 9 and %Tween is bigger

than 1.5. At low lipid levels, moderate concentration of the

surfactant is needed to produce a condensed particle. As the

level of the lipid increases, the small PS is maintained only if

the level of the surfactant is increased correspondingly. This

observation was reported elsewhere (Kelidari et al., 2015) and

was attributed to the ability to effectively reduce the

interfacial tension between aqueous and lipid phases, which

subsequently would lead to the formation of smaller droplets.

Higher surfactant concentration effectively stabilizes the

particles by forming a steric barrier on the particle surface,

and thereby protect smaller particles and prevent their

coalescence into bigger ones (Rahman & Zidan, 2010).

Figure 3(A2, A3) show that PS was almost independent of

lecithin concentration when surfactant or lipid levels were

held constant. Small PS (the dark region) was obtained when

lipid-to-drug ratio was between 9 and 10, and Tween% was

between 1.2 and 1.8, as long as lecithin level was kept less

Figure 2. Plot of actual versus ANN model predicted KP-SLN PS (A), EE (B), and Q24 (C). Pearson’s correlation coefficient (r2) is shown.

Figure 1. Structure of the ANN model for the relationship between
causal factors (X1–X3) and response variables (Y1–Y3) of KP-SLN. X1,
X2, and X3 denote lipid-to-drug ratio, %Tween 80, and %Lecithin,
respectively. Y1, Y2, and Y3 denote PS, EE, and Q24, respectively. H1,
H2, and H3 denote hidden layer units. Units 1 and 2 represent the
intercepts. The weights are shown on the synapses between units.

Table 2. Particle size, entrapment efficiency, and amount permeated in
24 h values of KP-SLN formulations. Results are the mean ± SD (n¼ 3).

Formulation
Y1: Particle size,

PS (nm)

Y2: Entrapment
efficiency,

EE (%)

Y3: Amount
permeated

in 24 h, Q24 (%)

F1 114 ± 2.43 87 ± 2.36 55 ± 0.9
F2 122 ± 2.37 52 ± 2.5 49 ± 3.2
F3 90 ± 3.06 85 ± 2.10 26 ± 2.55
F4 50 ± 2.2 56 ± 3.03 45 ± 2.2
F5 100 ± 3.05 90 ± 1.85 45 ± 2.15
F6 104 ± 1.49 82 ± 2.3 48 ± 2.2
F7 50 ± 2.25 68 ± 2.2 41 ± 2.43
F8 57 ± 3 63 ± 2.18 35 ± 1.8
F9 66 ± 2.66 78 ± 2.05 78 ± 2.15
F10 83 ± 1.53 63 ± 2.85 63 ± 2.85
F11 93 ± 2.63 52 ± 2.75 56 ± 1.96
F12 110 ± 2.52 67 ± 1.59 53 ± 2.4
F13 (1) 88.6 ± 2.2 48 ± 1.3 38 ± 2.78
F13 (2) 73 ± 2.31 64 ± 2.26 44 ± 1.5
F13 (3) 89 ± 2.56 52 ± 2.62 37 ± 2.1
F13 (4) 71 ± 2.45 61 ± 2.37 43 ± 2.5
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than 0.35%. It seems logic to conclude that lipid-to-drug ratio

and surfactant concentrations are more important than the

lecithin concentration in determining the size of the

nanoparticles. This conclusion is in agreement with findings

of previous studies that reported limited effect of lecithin on

PS (Rahman & Zidan, 2010).

Entrapment ratios greater than 80% (the white zone)

was obtained when lipid-to-drug ratio was more than 9

(Figure 3(B1, B2)), lecithin less than 0.35% (Figure 3(B2)),

and Tween 80 below 1% (Figure 3(B1, B3)). Increasing lipid

level but decreasing both the surfactant and phospholipid

concentrations seems to increase the EE. This finding is in

line with previous reports (Priyanka & Hasan, 2012; Kelidari

& Saeedi, 2015) and can be justified by the fact that higher

lipid concentration will provide more space to increase lipid

content and reduce the tendency of drug to escape to the

external phase.

Best Q24 values (the white zone) were obtained when lipid-

to-drug ratio was set to be less than 8.5 (Figure 3(C1, C2)),

and Tween 80 was set to be between 1.2 and 1.8%

(Figure 3(C1, C3)). The influence of causal factors on

the permeability (Figure 3(C1–C3)) seems to inversely

correlate with their effect on the PS (Figure 3 (A1–A3)). It

has been suggested that nanoparticle size is the most

important factor for determining its ability to facilitate drug

partitioning across the stratum corneum (Sivaramakrishnan

et al., 2004).

The effect of lecithin concentration on EE (Figure 3(B2))

seems to be modest. This observation was reported elsewhere

(Liu et al., 2010). Addition of phospholipid can influence

drug entrapment in two ways: (1) enhances drug solubility

and entrapment through formation of the reverse micelles

inside the SLN; and (2) increases the tendency of forming

smaller particles which, according to some reports (Cortesi

et al., 2002), is the main reason for the significant dropdown

of EE. Therefore, the limited effect of lecithin on EE may

result from dynamic equilibrium between the two effects. Due

to its little influence on PS (Figure 3(A2,A3)), it was not

surprising to see a limited influence for lecithin on perme-

ability too (Figure 3(C2)).

Optimization of KP-SLN

The composition of the KP-SLN optimized based on our

ANN model is shown in Table 3. The corresponding optimal

response variables were: PS560 nm, EE475% and Q24465%

(Table 4), suggesting that the SLN formulation presented in

Table 3 is an optimal one indeed.

Figure 3. Response surface plots for the effect of causal factors (Lipid-to-drug ratio, %Tween 80, and %Lecithin) on KP-SLN PS (nm) (A1–A3),
EE (%) (B1–B3), and Q24 (%) (C1–C3).

Table 3. Composition of the ANN model predicted optimal KP-SLN
formulation based on the original and 250 bootstrap datasets.

Optimal solution (formulation)

Factor Value Bootstrap mean Bootstrap 95%CI

X1: Lipid:Drug 7.85 7.71 7.63–8.51
X2: Tween 80 (%) 1.27 1.38 0.601–2.40
X3: Lecithin (%) 0.263 0.267 0.263–0.328
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The bootstrap statistics mentioned earlier and shown in

Table 3 were based on a restricted bootstrap technique. In this

technique, 250 different optimal solutions were obtained

based on 250 datasets resampled from the original data. To

avoid the influence of flawed or unrealistic data samples on

calculated statistics (e.g. when a single observation is

repeated 90% of the times), the bootstrap optimal solutions

were clustered using the k-midoid algorithm and the results

are shown in Figure 4. The cluster analysis identified three

groups marked as (a), (b), and (c). The optimal solution based

on the original dataset clearly belonged to the group (c),

indicating that this cluster represents a neighborhood for the

optimal solution. Accordingly, statistical limits of the (c)

cluster were computed in Table 3.

Model robustness reflects the ability of the model to

replicate a certain output irrespective of prior assumptions,

while model accuracy indicates its ability to produce a true

output. Together, robustness and accuracy determine the

reliability of a given mathematical model. The close agree-

ment between the optimal solution based on the original

dataset and that is based on clustered bootstrapping (i.e.,

restricted replication) (Table 3) suggests that the model is

robust. While robustness of our developed ANN model was

asserted by bootstrap, we still needed to check the model

accuracy. To do so, studies of PS, EE, and Q24 were also

undertaken with the optimal formulation suggested by the

ANN model (Table 3). The responses of the optimal

formulation predicted by the ANN model coincided well

with the experimentally determined values (Table 4), con-

firming the accuracy of our developed ANN model.

Morphological evaluation of KP-SLN dispersion

The morphology of the SLN-loaded with KP was investigated

by TEM. Figure 5 shows that the nanoparticles are almost

spherical with smooth morphology, appear as black dots, well

dispersed and separated on the surface. This description is in

agreement with the finding of a previous study (Mehnert &

Mäder, 2001) which reported that combining chemically

heterogeneous lipid with heterogeneous surfactants favors the

formation of ideally spherical lipid nanoparticles. There are

three different models supporting drug distribution theory

within solid lipid nanoparticles: (1) core-shell model with

drug enriched shell; (2) core–shell model with drug-enriched

core; and (3) solid–solution model (Muller et al., 2000).

Figure 5 indicates the presence of a very thin layer surround-

ing the particles, suggesting drug-enriched core distribution

model. Such distribution within the nanoparticles is expected

to impact the in vitro drug release profile.

Rheology of the KP-SLN gel

Rheology of a semisolid drug carrier is a very important

physical parameter for its percutaneous application

(Lippacher et al., 2002). In the present study, the rheological

properties of the prepared gels were evaluated using a

rotational viscometer of cone and plate type. Commercial and

KP-SLN gels showed pseudoplastic flow with variable

thixotropic behavior (Figure 6).

Thixotropy is required for topical application. Thixotropic

materials will lose structure and viscosity during shear

allowing easy spreading over the skin. The material will

Figure 4. Discriminant plot of bootstrap standardized optimal solutions.
The axes are the principal components explaining the maximum
variability in formulation factors of bootstrap optimal solutions. Each
letter symbol corresponds to a cluster identified using the k-midoid
algorithm. The X indicates the position of the original dataset optimal
solution.

Figure 5. Transmission electron micrograph of the KP-SLN dispersion.
The black dots represent KP-SLN, the gray dots and background
represents the dispersion medium stained by phosphotungstic acid.

Table 4. Comparison of measured and ANN model predicted responses
(PS, EE, and Q24) of the optimal formulation.

Response Measured mean ± SD Predicted Prediction error (%)*

Y1: PS (nm) 55 ± 1.65 54.9 0.182
Y2: EE (%) 82 ± 2.05 76.8 6.34
Y3: Q24 (%) 68.5 ± 2.85 65.5 4.38

*Calculated as (measured-predicted)/measured*100.
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slowly rebuild its structure and regain viscosity when shear is

removed allowing prolonged residence on the skin. Ostwade’s

power parameter and area of hysteresis loop (Table 5)

measure the degree of thixotropy. Although the former

parameter was basically the same in both formulations, the

area was significantly larger in the KP-SLN gel. The better

thixotropy of our developed SLN formulation is probably due

to interference of the lipid with hydrogen-bond reformation

during gel structure recovery phase. This behavior is believed

to slow down the rebuilding of gel three-dimensional network

(Liu et al., 2008).

In vitro release of KP from KP-SLN gel

The release profiles of KP from solid lipid nanoparticles gel

formulation as well as commercial gel are illustrated in

Figure 7. The release rate of KP from SLN was lower than the

corresponding commercial one (Table 6), suggesting the

ability of the SLNs to retard the release of KP. KP release

from SLN displayed an initial burst phase for 2 h with

15 ± 0.9% KP being released, followed by a sustained phase

reaching 70 ± 2.08% of KP after 24 h.

Linear regression analysis of the release data revealed

that KP was released from SLN by a diffusion-controlled

mechanism which is based on the Fick’s law of diffusion,

while KP was released from the commercial one by first-order

kinetics which describes that release rate is dependent on drug

concentration (Table 6).

Ex-vivo permeability of KP released from the
KP-SLN gel

The profiles of KP permeability through the excised rat skin

shown in Figure 8 suggest that SLNs are efficient permeation

enhancers, where KP permeation rate is higher when

incorporated in the SLN gel formulation compared with the

commercial gel. This finding was confirmed by analyzing

these profiles using a diffusion-based model (Equation 6).

The permeability coefficient and flux were significantly

enhanced when SLNs were used (Table 7). This enhancement

can be explained by increased diffusivity rather than by

altered partitioning across the skin. The diffusion parameter

D0 was 2-folds larger for the KP-SLN gel compared to the

commercial gel, while the partition parameter K0 of both

formulations were very close (Table 7). This dermal perme-

ation enhancement achieved by the prepared SLNs can be

Figure 7. In vitro release profile of KP from SLN gel and commercial
gel across the dialysis membrane. The error bars represent the 95%
confidence intervals of 3 experiments.

Figure 6. The flow curves of the commercial gel and KP-SLN gel. The
error bars represent the 95% confidence intervals of 3 experiments.

Table 5. Rheological parameters of KP-SLN gel and commercial gel. Results are the mean ± SD (n¼ 3).

Formulation
Minimum viscosity

(cP)
Maximum viscosity

(cP)
Ostwade’s power

(n)
Area of hysteresis loop

(Dyne/cm2 sec)

KP-SLN gel 1556 ± 82 8118 ± 367 0.74 ± 0.011 41625 ± 464
Commercial gel 914 ± 50 5219 ± 230 0.76 ± 0.010 19761 ± 199
t-test p-value 50.005 50.005 40.05 50.0001

Table 6. Kinetic analysis of the in vitro release data of KP-SLN gel and commercial gel.

R2 Release rate

Formulation Zero First Diffusion Release mechanism Zero First Diffusion

KP–SLN gel 0.904 0.966 0.99 Diffusion 0.037 0.057 0.148
Commercial gel 0.882 0.989 0.987 First 0.052 0.114 0.206
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explained by their lipophilic nature that may enhance the

permeation of the drug, their small particle size that creates

a large contact surface area and their ability to form a

monolayer film that consequently produces intimate drug

contact with the skin. Since this monolayer film is hydro-

phobic, it has an occlusive action that retards the loss of

moisture as a result of evaporation, which can facilitate drug

penetration (Wissing & Müller, 2003). Additionally, loss of

water content from the SLNs induces crystal modification of

SLNs matrix, and this can induce drug expulsion and

penetration (Teeranachaideekul et al., 2008).

Primary skin irritation study

Application of the KP-SLN gel to rabbit skin was not

associated with irritation, erythema or edema (Figure 9). It is

generally accepted that SLNs have a skin protective effect.

Such an effect is exerted through the formation of occlusive

film layer of large surface area, thus preventing hydro-

dynamic water evaporation and promoting skin hydration

(Wissing & Müller, 2002; Wissing & Müller, 2003; Souto &

Müller, 2008). It seems that SLNs are not only efficient, but

also safe and protective permeation enhancers. The later

qualities are lacked by traditional permeation enhancers that

are in use.

Figure 9. Photographs of rabbit skin after
application of 1% formaldehyde solution (A),
no treatment (B), KP-SLN gel (C), and blank
SLN gel (D).

Figure 8. Ex vivo permeation profile of KP-SLN gel and commercial gel
through rat skin. The error bars represent the 95% confidence intervals of
3 experiments.

Table 7. Skin permeation parameters of KP-SLN gel and commercial gel. Results are the mean ± SD (n¼ 3).

Formulation K0�103 (cm) D0�10 (1/h) KP� 104 (cm/h) Jss (mg/h/cm2) Tlag (min)

KP-SLN gel 1.80 ± 0.92 7.33 ± 4.8 10.4 ± 0.02 25.9 ± 0.05 17.4 ± 8.9
Commercial gel 2.31 ± 1.4 3.35 ± 2.6 5.47 ± 0.02 13.7 ± 0.06 42.0 ± 25
t-test p-value 40.5 40.1 50.001 50.001 40.1
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In vivo activity and pharmacodynamic modeling

Most studies reporting on novel topical formulations for

NSAIDs base their in vivo anti-inflammatory activity evalu-

ation on measuring surrogate endpoints at a single time point

following application of the test and reference formulations.

Yet, in vivo pharmacodynamic studies that involve repeated

time measurements and dose duration-response modeling

(i.e., the FDA approach for corticosteroid bioequivalence

assessment) secures numerous advantages; (1) it determines

the optimal dose duration for comparison; (2) it allows

classification of formulations into various potency and

efficacy classes (single time measurement characterizes

efficacy alone); (3) it permits mechanistic understanding of

comparative performances of the various formulations; and

(4) making statistical inferences about efficacy using single

measurements is prone to higher type I and type II errors.

Therefore, we explored the merits of the FDA approach in

this study.

The time course of percentage change from baseline in

carrageenan-induced rat paws edema following 0.5, 2, and 6 h

durations is shown in Figure 10 for the KP-SLN gel and the

commercial formulation. As time increases, the response

increases rapidly and then starts to level off gradually until an

asymptotic response is reached. Therefore, it was not

surprising to find that the response-time data was best

described by a Hill function parametrized in terms of a

maximum effect (Emax) and time associated with half-

maximal effect (T50). The rate of reduction in edema

thickness (the rapidly rising part of the curve) seemed to be

the same at all dose durations, indicating dose-independent

T50 parameter. On the contrary, the difference between the

maximum effect of the 0.5 h and the 2 h doses was larger than

that between the 2 h and the 6 h doses. This observation

suggests that the Emax parameter shows a dose-dependent

behavior that also follows a Hill function. Using the Hill

model in our study is in agreement with previous recommen-

dations of using the Emax model to describe the relationship

between the vasoconstriction response to topical corticoster-

oid and dose duration (Tsai et al., 2004).

The good agreement between measured and model-

predicted responses in both the KP-SLN gel and commercial

formulations (Figure 11) suggests that the model is efficient.

Estimates of the model parameters along with the relative

standard error of the estimate (%SE), and the non-parametric

95% confidence intervals for both formulations are depicted

in Table 8. Except for one parameter (the T50 of the

commercial formulation), the rest of the model parameters

were estimated with good precision as indicated by a %SE

less than 30% and narrow confidence intervals. Parameters

Smax and T50 were significantly larger in the KP-SLN gel,

while SD50 was basically the same. While exhibiting similar

potencies (equal SD50 values), our optimized SLN formula-

tion is more efficacious than the commercial formulation

(larger Smax value) and produces more delayed response

(larger T50 value). This result is understandable in the light of

the fact that KP loaded in the SLN was released at a slower

rate (Figure 7), but penetrated the skin at higher rate

Figure 10. Time course of percentage change
from baseline in carrageenan-induced edema
thickness following three dose durations.
Panels (A) and (B) show the response to KP-
SLN gel, and commercial gel, respectively.
The error bars represent the 95% confidence
intervals of 3 experiments.

Figure 11. Goodness-of-fit plot showing the
relationship between measured and longitu-
dinal dose duration response model predicted
changes in edema thickness from baseline in
KP-SLN gel (A) and commercial gel (B)
formulations. Pearson’s correlation coeffi-
cient (r2) is shown.
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(Figure 8) compared to KP loaded in the commercial gel.

The finding of our study is in accordance with previous

studies that reported enhanced anti-inflammatory activity of

NSAIDs when loaded in SLNs (Jain et al., 2013; Khurana &

Bedi, 2013).

Assay sensitivity is greatest at doses that produce

responses in the rapidly rising region of the dose-response

curve based on the Emax model (Singh et al., 1999). Therefore,

using dose duration around the SD50 of the test and reference

formulations (�30 minutes) maximizes the chances of detect-

ing differences between them. If the ultimate objective is to

compare the efficacy of the two formulations, measurement

time around the T90 (time at which 90% of the maximum

effect is reached) is optimal for comparison. In the case

presented in this study, thicknesses of rat paw edema are

better determined at 50 minutes and 18 h, the T90 of the

reference and test formulations, respectively.

Conclusion

SLNs are safe and effective permeation enhancers for topical

delivery. SLNs improve the efficacy of topically applied KP

and retard the response to it, without altering its potency.

ANN coupled with clustered bootstrap is a useful method for

finding optimal solutions and estimating uncertainty asso-

ciated with these solutions. Using this technique, we

successfully optimized a SLN formulation for topical delivery

of KP. In vivo activity assessment using LDR models allow

mechanistic understanding of comparative performances of

different topical formulations, and help design efficient and

sensitive dermatological bioequivalence methods.
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